Physicists Win Supercomputing Time to Study Fusion and the Cosmos

December 12, 2017

Dec. 12, 2017 — More than 210 million core hours on two of the most powerful supercomputers in the nation have been won by two teams led by researchers at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). The highly competitive awards from the DOE Office of Science’s INCITE (Innovative and Novel Impact on Computational Theory and Experiment) program will accelerate the development of nuclear fusion as a clean and abundant source of energy for generating electricity and will advance understanding of the high-energy-density (HED) plasmas found in stars and other astrophysical objects.

A single core hour represents the use of one computer core, or processor, for one hour. A laptop computer with only one processor would take some 24,000 years to run 210 million core hours.

“Extremely important and beneficial”

“These awards are extremely important and beneficial,” said Michael Zarnstorff, deputy director for research at PPPL. “They give us access to leadership-class highest-performance computers for highly complex calculations. This is key for advancing our theoretical modeling and understanding.” Leadership-class computing systems are high-end computers that are among the most advanced in the world for solving scientific and engineering problems.

The allocations include more than 160 million core hours for physicist C.S. Chang and his team, marking the first year of a renewable three-year award. The first-year hours are distributed over two machines: 100-million core hours on Titan, the most powerful U.S supercomputer, which can perform some 27 quadrillion (1015) calculations per second at the Oak Ridge Leadership Computing Facility (OLCF); and 61.5 million core hours on Theta, which completes some 10 quadrillion calculations a second at the Argonne Leadership Computing Facility (ALCF).  Both sites are DOE Office of Science User Facilities.

Also received are 50 million core hours on Titan for Amitava Bhattacharjee, head of the Theory Department at PPPL, and William Fox and their team to study HED plasmas produced by lasers.

Chang’s group consists of colleagues at PPPL and other institutions and will use the time to run the XGC code developed by PPPL and nationwide partners.  The team is exploring the dazzlingly complex edge of fusion plasmas with Chang as lead principal investigator of the partnership center for High-fidelity Boundary Plasma Simulation — a program supported by the DOE Office of Science’s Scientific Discovery through Advanced Computing (SciDAC). The edge is critical to the performance of plasma that fuels fusion reactions.

Fusion — the fusing of light elements

Fusion is the fusing of light elements that most stars use to generate massive amounts of energy – and that scientists are trying to replicate on Earth for a virtually inexhaustible supply of energy. Plasma – the fourth state of matter that makes up nearly all the visible universe – is the fuel they would use to create fusion reactions.

The XGC code will perform double-duty to investigate developments at the edge of hot, charged fusion plasma. The program will simulate the transition from low- to high-confinement of the edge of fusion plasmas contained inside magnetic fields in doughnut-shaped fusion devices called tokamaks. Also simulated will be the width of the heat load that will strike the divertor, the component of the tokamak that will expel waste heat and particles from future fusion reactors based on magnetic confinement such as ITER, the international tokamak under construction in France to demonstrate the practicality of fusion power.

The simulations will build on knowledge that Chang has achieved in the previous-cycle SciDAC project.  “We’re just getting started,” Chang said. “In the new SciDAC project we need to understand the different types of transition that are thought to occur in the plasma, and the physics behind the width of the heat load, which can damage the divertor in future facilities such as ITER if the load is too narrow and concentrated.”

Advancing progress in understanding HED plasmas

The Bhattacharjee-Fox award, the second and final part of a two-year  project, will advance progress in the team’s understanding of the dynamics of magnetic fields in HED plasmas. “The simulations will be immensely beneficial in designing and understanding the results of experiments carried out at the University of Rochester and the National Ignition Facility at Lawrence Livermore National Laboratory” Bhattacharjee said.

The project explores the magnetic reconnection and shocks that occur in HED plasmas, producing enormous energy in processes such as solar flares, cosmic rays and geomagnetic storms. Magnetic reconnection takes place when the magnetic field lines in plasma converge and break apart, converting magnetic energy into explosive particle energy. Shocks appear when the flows in the plasma exceed the speed of sound, and are a powerful process for accelerating charged particles.

To study the process, the team fires high-power lasers at tiny spots of foil, creating plasma bubbles with magnetic fields that collide to form shocks and come together to create reconnection. “Our group has recently made important progress on the properties of shocks and novel mechanisms of magnetic reconnection in laser-driven HED plasmas,” Bhattacharjee said. “This could not be done without INCITE support.”

PPPL, on Princeton University’s Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the largest single supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov(link is external).


Source: PPPL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This