Physics Data Processing at NERSC Dramatically Cuts Reconstruction Time

February 14, 2018

Feb. 14, 2018 — In a recent demonstration project, physicists from Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (Berkeley Lab) used the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC) to reconstruct data collected from a nuclear physics experiment, an advance that could dramatically reduce the time it takes to make detailed data available for scientific discoveries.

The researchers reconstructed multiple datasets collected by the STAR (Solenoidal Tracker At RHIC) detector during particle collisions at the Relativistic Heavy Ion Collider (RHIC), a nuclear physics research facility at BNL. By running multiple computing jobs simultaneously on the allotted supercomputing cores, the team transformed raw data into “physics-ready” data at the petabyte scale in a fraction of the time it would have taken using in-house high-throughput computing resources—even with a two-way transcontinental journey via ESnet, the Department of Energy’s high-speed, high-performance data-sharing network that is managed by Berkeley Lab.

Preparing raw data for analysis typically takes many months, making it nearly impossible to provide such short-term responsiveness, according to Jérôme Lauret, a senior scientist at BNL and co-author on a paper outlining this work that was published in the Journal of Physics.

“This is a key usage model of high performance computing (HPC) for experimental data, demonstrating that researchers can get their raw data processing or simulation campaigns done in a few days or weeks at a critical time instead of spreading out over months on their own dedicated resources,” said Jeff Porter, a member of the data and analytics services team at NERSC and co-author on the Journal of Physics paper.

Billions of Data Points

The STAR experiment is a leader in the study of strongly interacting QCD matter that is generated in energetic heavy ion collisions. STAR consists of a large, complex set of detector systems that measure the thousands of particles produced in each collision event. Detailed analyses of billions of such collisions have enabled STAR scientists to make fundamental discoveries and measure the properties of the quark-gluon plasma. Since RHIC started running in the year 2000, this raw data processing, or reconstruction, has been carried out on dedicated computing resources at the RHIC and ATLAS Computing Facility (RACF) at BNL. High-throughput computing clusters crunch the data event by event and write out the coded details of each collision to a centralized mass storage space accessible to STAR physicists around the world.

In recent years, however, STAR datasets have reached billions of events, with data volumes at the multi-petabyte scale. The raw data signals collected by the detector electronics are processed using sophisticated pattern recognition algorithms to generate the higher-level datasets that are used for physics analysis. So the STAR computing team investigated the use of external resources to meet the demand for timely access to physics-ready data, ultimately turning to NERSC. Among other things, NERSC operates the PDSF cluster for the HEP/NP experiment community, which represents the second largest compute cluster available to the STAR collaboration.

A Processing Framework

Unlike the high-throughput computers at the RACF and PDSF, which analyze events one by one, HPC resources like those at NERSC break large problems into smaller tasks that can run in parallel. So the challenge was to parallelize the processing of STAR event data in a way that can scale out to run on large amounts of data with reproducible results.

The processing framework run at NERSC was built upon several core features. Shifter, a Linux container system developed at NERSC, provided a simple solution to the difficult problem of porting complex software to new computing systems and keep its expected behavior. Scalability was achieved by eliminating bottlenecks in accessing both the event data and experiment databases that record environmental changes—voltage, temperature, pressure and other detector conditions—during data taking. To do this, the workload was broken up into data chunks, sized to run on a single node onto which a snapshot of the STAR database could also be stored. Each node was then self-sufficient, allowing the work to automatically expand out to as many nodes as available without any direct intervention.

“Several technologies developed in-house at NERSC allowed us to build a highly fault-tolerant, multi-step, data-processing pipeline that could scale to practically unlimited number of nodes with the potential to dramatically fold the time it takes to process data for many experiments,” noted Mustafa Mustafa a Berkeley Lab physicist who helped design the system.

Another challenge in migrating the task of raw data reconstruction to an HPC environment was getting the data from BNL in New York to NERSC in California and back. Both the input and output datasets are huge. The team started small with a proof-of-principle experiment—just a few hundred jobs—to see how their new workflow programs would perform. Colleagues at RACF, NERSC and ESnet—including Damian Hazen of NERSC and Eli Dart of ESnet—helped identify hardware issues and optimize the data transfer and the end-to-end workflow.

After fine-tuning their methods based on the initial tests, the team started scaling up, initially using 6,400 computing cores on Cori; in their most recent test they utilized 25,600 cores. The end-to-end efficiency of the entire process—the time the program was running (not sitting idle, waiting for computing resources) multiplied by the efficiency of using the allotted supercomputing slots and getting useful output all the way back to BNL—was 98 percent.

“This was a very successful large-scale data processing run on NERSC HPC,“ said Jan Balewski, a member of the data science engagement group at NERSC who worked on this project. “One that we can look to as a reference as we actively test alternative approaches to support scaling up the computing campaigns at NERSC by multiple physics experiments.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This