Physics Data Processing at NERSC Dramatically Cuts Reconstruction Time

February 14, 2018

Feb. 14, 2018 — In a recent demonstration project, physicists from Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (Berkeley Lab) used the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC) to reconstruct data collected from a nuclear physics experiment, an advance that could dramatically reduce the time it takes to make detailed data available for scientific discoveries.

The researchers reconstructed multiple datasets collected by the STAR (Solenoidal Tracker At RHIC) detector during particle collisions at the Relativistic Heavy Ion Collider (RHIC), a nuclear physics research facility at BNL. By running multiple computing jobs simultaneously on the allotted supercomputing cores, the team transformed raw data into “physics-ready” data at the petabyte scale in a fraction of the time it would have taken using in-house high-throughput computing resources—even with a two-way transcontinental journey via ESnet, the Department of Energy’s high-speed, high-performance data-sharing network that is managed by Berkeley Lab.

Preparing raw data for analysis typically takes many months, making it nearly impossible to provide such short-term responsiveness, according to Jérôme Lauret, a senior scientist at BNL and co-author on a paper outlining this work that was published in the Journal of Physics.

“This is a key usage model of high performance computing (HPC) for experimental data, demonstrating that researchers can get their raw data processing or simulation campaigns done in a few days or weeks at a critical time instead of spreading out over months on their own dedicated resources,” said Jeff Porter, a member of the data and analytics services team at NERSC and co-author on the Journal of Physics paper.

Billions of Data Points

The STAR experiment is a leader in the study of strongly interacting QCD matter that is generated in energetic heavy ion collisions. STAR consists of a large, complex set of detector systems that measure the thousands of particles produced in each collision event. Detailed analyses of billions of such collisions have enabled STAR scientists to make fundamental discoveries and measure the properties of the quark-gluon plasma. Since RHIC started running in the year 2000, this raw data processing, or reconstruction, has been carried out on dedicated computing resources at the RHIC and ATLAS Computing Facility (RACF) at BNL. High-throughput computing clusters crunch the data event by event and write out the coded details of each collision to a centralized mass storage space accessible to STAR physicists around the world.

In recent years, however, STAR datasets have reached billions of events, with data volumes at the multi-petabyte scale. The raw data signals collected by the detector electronics are processed using sophisticated pattern recognition algorithms to generate the higher-level datasets that are used for physics analysis. So the STAR computing team investigated the use of external resources to meet the demand for timely access to physics-ready data, ultimately turning to NERSC. Among other things, NERSC operates the PDSF cluster for the HEP/NP experiment community, which represents the second largest compute cluster available to the STAR collaboration.

A Processing Framework

Unlike the high-throughput computers at the RACF and PDSF, which analyze events one by one, HPC resources like those at NERSC break large problems into smaller tasks that can run in parallel. So the challenge was to parallelize the processing of STAR event data in a way that can scale out to run on large amounts of data with reproducible results.

The processing framework run at NERSC was built upon several core features. Shifter, a Linux container system developed at NERSC, provided a simple solution to the difficult problem of porting complex software to new computing systems and keep its expected behavior. Scalability was achieved by eliminating bottlenecks in accessing both the event data and experiment databases that record environmental changes—voltage, temperature, pressure and other detector conditions—during data taking. To do this, the workload was broken up into data chunks, sized to run on a single node onto which a snapshot of the STAR database could also be stored. Each node was then self-sufficient, allowing the work to automatically expand out to as many nodes as available without any direct intervention.

“Several technologies developed in-house at NERSC allowed us to build a highly fault-tolerant, multi-step, data-processing pipeline that could scale to practically unlimited number of nodes with the potential to dramatically fold the time it takes to process data for many experiments,” noted Mustafa Mustafa a Berkeley Lab physicist who helped design the system.

Another challenge in migrating the task of raw data reconstruction to an HPC environment was getting the data from BNL in New York to NERSC in California and back. Both the input and output datasets are huge. The team started small with a proof-of-principle experiment—just a few hundred jobs—to see how their new workflow programs would perform. Colleagues at RACF, NERSC and ESnet—including Damian Hazen of NERSC and Eli Dart of ESnet—helped identify hardware issues and optimize the data transfer and the end-to-end workflow.

After fine-tuning their methods based on the initial tests, the team started scaling up, initially using 6,400 computing cores on Cori; in their most recent test they utilized 25,600 cores. The end-to-end efficiency of the entire process—the time the program was running (not sitting idle, waiting for computing resources) multiplied by the efficiency of using the allotted supercomputing slots and getting useful output all the way back to BNL—was 98 percent.

“This was a very successful large-scale data processing run on NERSC HPC,“ said Jan Balewski, a member of the data science engagement group at NERSC who worked on this project. “One that we can look to as a reference as we actively test alternative approaches to support scaling up the computing campaigns at NERSC by multiple physics experiments.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, provided a brief but insightful portrait of Nvidia’s rese Read more…

By John Russell

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

GTC 2019: Chief Scientist Bill Dally Provides Glimpse into Nvidia Research Engine

March 22, 2019

Amid the frenzy of GTC this week – Nvidia’s annual conference showcasing all things GPU (and now AI) – William Dally, chief scientist and SVP of research, Read more…

By John Russell

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This