Physics Data Processing at NERSC Dramatically Cuts Reconstruction Time

February 14, 2018

Feb. 14, 2018 — In a recent demonstration project, physicists from Brookhaven National Laboratory (BNL) and Lawrence Berkeley National Laboratory (Berkeley Lab) used the Cori supercomputer at the National Energy Research Scientific Computing Center (NERSC) to reconstruct data collected from a nuclear physics experiment, an advance that could dramatically reduce the time it takes to make detailed data available for scientific discoveries.

The researchers reconstructed multiple datasets collected by the STAR (Solenoidal Tracker At RHIC) detector during particle collisions at the Relativistic Heavy Ion Collider (RHIC), a nuclear physics research facility at BNL. By running multiple computing jobs simultaneously on the allotted supercomputing cores, the team transformed raw data into “physics-ready” data at the petabyte scale in a fraction of the time it would have taken using in-house high-throughput computing resources—even with a two-way transcontinental journey via ESnet, the Department of Energy’s high-speed, high-performance data-sharing network that is managed by Berkeley Lab.

Preparing raw data for analysis typically takes many months, making it nearly impossible to provide such short-term responsiveness, according to Jérôme Lauret, a senior scientist at BNL and co-author on a paper outlining this work that was published in the Journal of Physics.

“This is a key usage model of high performance computing (HPC) for experimental data, demonstrating that researchers can get their raw data processing or simulation campaigns done in a few days or weeks at a critical time instead of spreading out over months on their own dedicated resources,” said Jeff Porter, a member of the data and analytics services team at NERSC and co-author on the Journal of Physics paper.

Billions of Data Points

The STAR experiment is a leader in the study of strongly interacting QCD matter that is generated in energetic heavy ion collisions. STAR consists of a large, complex set of detector systems that measure the thousands of particles produced in each collision event. Detailed analyses of billions of such collisions have enabled STAR scientists to make fundamental discoveries and measure the properties of the quark-gluon plasma. Since RHIC started running in the year 2000, this raw data processing, or reconstruction, has been carried out on dedicated computing resources at the RHIC and ATLAS Computing Facility (RACF) at BNL. High-throughput computing clusters crunch the data event by event and write out the coded details of each collision to a centralized mass storage space accessible to STAR physicists around the world.

In recent years, however, STAR datasets have reached billions of events, with data volumes at the multi-petabyte scale. The raw data signals collected by the detector electronics are processed using sophisticated pattern recognition algorithms to generate the higher-level datasets that are used for physics analysis. So the STAR computing team investigated the use of external resources to meet the demand for timely access to physics-ready data, ultimately turning to NERSC. Among other things, NERSC operates the PDSF cluster for the HEP/NP experiment community, which represents the second largest compute cluster available to the STAR collaboration.

A Processing Framework

Unlike the high-throughput computers at the RACF and PDSF, which analyze events one by one, HPC resources like those at NERSC break large problems into smaller tasks that can run in parallel. So the challenge was to parallelize the processing of STAR event data in a way that can scale out to run on large amounts of data with reproducible results.

The processing framework run at NERSC was built upon several core features. Shifter, a Linux container system developed at NERSC, provided a simple solution to the difficult problem of porting complex software to new computing systems and keep its expected behavior. Scalability was achieved by eliminating bottlenecks in accessing both the event data and experiment databases that record environmental changes—voltage, temperature, pressure and other detector conditions—during data taking. To do this, the workload was broken up into data chunks, sized to run on a single node onto which a snapshot of the STAR database could also be stored. Each node was then self-sufficient, allowing the work to automatically expand out to as many nodes as available without any direct intervention.

“Several technologies developed in-house at NERSC allowed us to build a highly fault-tolerant, multi-step, data-processing pipeline that could scale to practically unlimited number of nodes with the potential to dramatically fold the time it takes to process data for many experiments,” noted Mustafa Mustafa a Berkeley Lab physicist who helped design the system.

Another challenge in migrating the task of raw data reconstruction to an HPC environment was getting the data from BNL in New York to NERSC in California and back. Both the input and output datasets are huge. The team started small with a proof-of-principle experiment—just a few hundred jobs—to see how their new workflow programs would perform. Colleagues at RACF, NERSC and ESnet—including Damian Hazen of NERSC and Eli Dart of ESnet—helped identify hardware issues and optimize the data transfer and the end-to-end workflow.

After fine-tuning their methods based on the initial tests, the team started scaling up, initially using 6,400 computing cores on Cori; in their most recent test they utilized 25,600 cores. The end-to-end efficiency of the entire process—the time the program was running (not sitting idle, waiting for computing resources) multiplied by the efficiency of using the allotted supercomputing slots and getting useful output all the way back to BNL—was 98 percent.

“This was a very successful large-scale data processing run on NERSC HPC,“ said Jan Balewski, a member of the data science engagement group at NERSC who worked on this project. “One that we can look to as a reference as we actively test alternative approaches to support scaling up the computing campaigns at NERSC by multiple physics experiments.”

About NERSC and Berkeley Lab

The National Energy Research Scientific Computing Center (NERSC) is a U.S. Department of Energy Office of Science User Facility that serves as the primary high-performance computing center for scientific research sponsored by the Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a DOE national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the U.S. DOE Office of Science. »Learn more about computing sciences at Berkeley Lab.


Source: NERSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This