Pioneers of Modern Computer Architecture Receive ACM A.M. Turing Award

March 21, 2018

ACM, the Association for Computing Machinery, today named John L. Hennessy, former President of Stanford University, and David A. Patterson, retired Professor of the University of California, Berkeley, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry. Hennessy and Patterson created a systematic and quantitative approach to designing faster, lower power, and reduced instruction set computer (RISC) microprocessors. Their approach led to lasting and repeatable principles that generations of architects have used for many projects in academia and industry. Today, 99% of the more than 16 billion microprocessors produced annually are RISC processors, and are found in nearly all smartphones, tablets, and the billions of embedded devices that comprise the Internet of Things (IoT).

Patterson and Hennessy. Image from the Patterson Hennessy text book, photo by Shane Harvey.

Hennessy and Patterson codified their insights in a very influential book, Computer Architecture: A Quantitative Approach, now in its sixth edition, reaching generations of engineers and scientists who have adopted and further developed their ideas. Their work underpins our ability to model and analyze the architectures of new processors, greatly accelerating advances in microprocessor design.

The ACM Turing Award, often referred to as the “Nobel Prize of Computing,” carries a $1 million prize, with financial support provided by Google, Inc. It is named for Alan M. Turing, the British mathematician who articulated the mathematical foundation and limits of computing. Hennessy and Patterson will formally receive the 2017 ACM A.M. Turing Award at the ACM’s annual awards banquet on Saturday, June 23, 2018 in San Francisco, California.

“ACM initiated the Turing Award in 1966 to recognize contributions of lasting and major technical importance to the computing field,” said ACM President Vicki L. Hanson. “The work of Hennessy and Patterson certainly exemplifies this standard. Their contributions to energy-efficient RISC-based processors have helped make possible the mobile and IoT revolutions. At the same time, their seminal textbook has advanced the pace of innovation across the industry over the past 25 years by influencing generations of engineers and computer designers.”

Attesting to the impact of Hennessy and Patterson’s work is the assessment of Bill Gates, principal founder of Microsoft Corporation, that their contributions “have proven to be fundamental to the very foundation upon which an entire industry flourished.”

Development of MIPS and SPARC 

While the idea of reduced complexity architecture had been explored since the 1960s—most notably in the IBM 801 project—the work that Hennessy and Patterson led, at Stanford and Berkeley respectively, is credited with firmly establishing the feasibility of the RISC approach, popularizing its concepts, and introducing it to academia and industry. The RISC approach differed from the prevailing complex instruction set computer (CISC) computers of the time in that it required a small set of simple and general instructions (functions a computer must perform), requiring fewer transistors than complex instruction sets and reducing the amount of work a computer must perform.

Patterson’s Berkeley team, which coined the term RISC, built and demonstrated their RISC-1 processor in 1982. With 44,000 transistors, the RISC-1 prototype outperformed a conventional CISC design that used 100,000 transistors. Hennessy co-founded MIPS Computer Systems Inc. in 1984 to commercialize the Stanford team’s work. Later, the Berkeley team’s work was commercialized by Sun Microsystems in its SPARC microarchitecture.

Despite initial skepticism of RISC by many computer architects, the success of the MIPS and SPARC entrepreneurial efforts, the lower production costs of RISC designs, as well as more research advances, led to wider acceptance of RISC. By the mid-1990s, RISC microprocessors were dominant throughout the field.

Groundbreaking Textbook

Hennessy and Patterson presented new scientifically-based methodologies in their 1990 textbook Computer Architecture: a Quantitative Approach. The book has influenced generations of engineers and, through its dissemination of key ideas to the computer architecture community, is credited with significantly increasing the pace of advances in microprocessor design. In Computer Architecture, Hennessy and Patterson encouraged architects to carefully optimize their systems to allow for the differing costs of memory and computation. Their work also enabled a shift from seeking raw performance to designing architectures that take into account issues such as energy usage, heat dissipation, and off-chip communication. The book was groundbreaking in that it was the first text of its kind to provide an analytical and scientific framework, as well as methodologies and evaluation tools for engineers and designers to evaluate the net value of microprocessor design.

Biographical Background

John L. Hennessy

John L. Hennessy was President of Stanford University from 2000 to 2016. He is Director of the Knight-Hennessy Scholars Program at Stanford, a member of the Board of Cisco Systems and the Gordon and Betty Moore Foundation and Chairman of the Board of Alphabet Inc. Hennessy earned his Bachelor’s degree in electrical engineering from Villanova University and his Master’s and doctoral degrees in computer science from the State University of New York at Stony Brook.

Hennessy’s numerous honors include the IEEE Medal of Honor, the ACM-IEEE CS Eckert-Mauchly Award (with Patterson), the IEEE John von Neumann Medal (with Patterson), the Seymour Cray Computer Engineering Award, and the Founders Award from the American Academy of Arts and Sciences. Hennessy is a Fellow of ACM and IEEE, and is a member of the National Academy of Engineering, the National Academy of Sciences and the American Philosophical Society.

David A. Patterson

David A. Patterson is a Distinguished Engineer at Google and serves as Vice Chair of the Board of the RISC-V Foundation, which offers an open free instruction set architecture with the aim to enable a new era of processor innovation through open standard collaboration. Patterson was Professor of Computer Science at UC, Berkeley from 1976 to 2016. He received his Bachelor’s, Master’s and doctoral degrees in computer science from the University of California, Los Angeles.

Patterson’s numerous honors include the IEEE John von Neumann Medal (with Hennessy), the ACM-IEEE CS Eckert-Mauchly Award (with Hennessy), the Richard A. Tapia Award for Scientific Scholarship, Civic Science, and Diversifying Computing, and the ACM Karl V. Karlstrom Outstanding Educator Award. Patterson served as ACM President from 2004 to 2006. He is a Fellow of ACM, AAAS and IEEE, and was elected to the National Academy of Engineering and the National Academy of Sciences.

About the ACM A.M. Turing Award

The A.M. Turing Award was named for Alan M. Turing, the British mathematician who articulated the mathematical foundation and limits of computing, and who was a key contributor to the Allied cryptanalysis of the Enigma cipher during World War II. Since its inception in 1966, the Turing Award has honored the computer scientists and engineers who created the systems and underlying theoretical foundations that have propelled the information technology industry.

About ACM

ACM, the Association for Computing Machinery, is the world’s largest educational and scientific computing society, uniting educators, researchers and professionals to inspire dialogue, share resources and address the field’s challenges. ACM strengthens the computing profession’s collective voice through strong leadership, promotion of the highest standards, and recognition of technical excellence. ACM supports the professional growth of its members by providing opportunities for life-long learning, career development, and professional networking.


Source: ACM

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Quantinuum Reports 99.9% 2-Qubit Gate Fidelity, Caps Eventful 2 Months

April 16, 2024

March and April have been good months for Quantinuum, which today released a blog announcing the ion trap quantum computer specialist has achieved a 99.9% (three nines) two-qubit gate fidelity on its H1 system. The lates Read more…

Mystery Solved: Intel’s Former HPC Chief Now Running Software Engineering Group 

April 15, 2024

Last year, Jeff McVeigh, Intel's readily available leader of the high-performance computing group, suddenly went silent, with no interviews granted or appearances at press conferences.  It led to questions -- what's Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Institute for Human-Centered AI (HAI) put out a yearly report to t Read more…

Crossing the Quantum Threshold: The Path to 10,000 Qubits

April 15, 2024

Editor’s Note: Why do qubit count and quality matter? What’s the difference between physical qubits and logical qubits? Quantum computer vendors toss these terms and numbers around as indicators of the strengths of t Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Computational Chemistry Needs To Be Sustainable, Too

April 8, 2024

A diverse group of computational chemists is encouraging the research community to embrace a sustainable software ecosystem. That's the message behind a recent Read more…

Hyperion Research: Eleven HPC Predictions for 2024

April 4, 2024

HPCwire is happy to announce a new series with Hyperion Research  - a fact-based market research firm focusing on the HPC market. In addition to providing mark Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire