Most Powerful Academic Supercomputer in Canada ‘Cedar’ Launches

April 20, 2017

VANCOUVER, B.C., April 20, 2017 — Today Simon Fraser University (SFU), Compute Canada and WestGrid celebrated the launch of the most powerful academic supercomputer in Canada, Cedar. Housed in the new data centre at SFU’s Burnaby Campus, Cedar will serve Canadian researchers across the country in all scientific disciplines by providing expanded compute, storage and cloud resources.

“We are honoured to be one of the four new national advanced research computing (ARC) systems that will provide Canadian researchers access to the latest technology and expertise they need to maketransformative scientific discoveries,” says Joy Johnson, SFU’s vice-president, research and
international. “SFU is a distinct leader in ARC and Cedar will place us in the world’s top 100 supercomputer installations.”

Compute Canada, in collaboration with its regional partners and member institutions, is leading a national renewal and modernization of supercomputers and data storage facilities. This first stage is valued at $75-million in funding from the Canada Foundation for Innovation (CFI) as well as provincial and industry partners, and includes four national sites, one of which is the SFU system.

“I am pleased that our government, through the Canada Foundation for Innovation, is investing in the latest advanced scientific technology that will support front-line scientists whose contributions help us build a healthier, stronger middle class. Cedar will help scientists exchange ideas, collaborate and make discoveries that lead to faster technologies, new medical therapies and a more prosperous economy,” says the Honourable Kirsty Duncan, Minister of Science.

“Most research today is data intensive, whether your area is genomics, advanced materials, or humanities and social sciences,” says Dr. Dugan O’Neil, Compute Canada’s chief science officer and physics professor at SFU. “Cedar, and the three national other systems, will serve a diverse range of research projects and enable discoveries that may not have otherwise happened because the tools were simply not there.”

Currently, there are 27 data centres and 50 aging legacy systems across Canada that will be consolidated into five to ten data centres by the end of 2018. With greater computational power than all of Compute Canada’s legacy systems combined, Cedar is built for big data. The system can support researchers collecting, analyzing or sharing immense volumes of data and will provide the scale and capacity required for today’s modern research needs.

Dr. Fiona Brinkman, a professor in the Department of Molecular Biology and Biochemistry at SFU who runs a “microbe-loving bioinformatics and genomics research lab, aiming to better control infectious diseases in a sustainable way,” is eager to get her hands on the new system.

“The new ARC system, Cedar, will allow Canadian researchers to much more quickly analyze the DNA of microbes, allowing us to more rapidly track and understand the origins and spread of infectious disease outbreaks,” says Brinkman.

“For the community of over 11,000 Canadian researchers that we serve today, Cedar will give Canadian researchers and innovators the ability to compete and excel globally using big data and big compute tools,” says Mark Dietrich, Compute Canada’s president and chief executive officer.

“We’re honoured to collaborate with our partners at SFU and WestGrid and proud of the achievements we’ve accomplished together.”

“New technology is always exciting, but combine it with our greatest resource — our people — and you’ve got something that is truly transformative,” says Lindsay Sill, executive director of WestGrid, a regional partner of Compute Canada. “With Cedar setting a new bar for computing power in Canada, and our experts behind the scenes supporting its use, I think we’ll see extraordinary advances in artificial intelligence, green technology, personalized medicine, and other key research areas that directly benefit Canadians.”

Mark Roman, SFU’s chief information officer agrees: “Providing a national, strategic research computing service involves some obvious facilities such as massive computational processing and vast storage capacity. There are also many behind-the-scenes facilities, including enormously complex support services, processes and infrastructure. Ultimately, the real success of this project is fully and completely dependent on a small group of brilliant and dedicated people—they are the true heroes who transcend the technology.”

Fast Facts

  • Cedar is Canada’s most powerful academic supercomputer and one of the world’s top 100 supercomputer installations.
  • Researchers across Canada will now have access to unprecedented computing power, expanded storage, and cloud resources.
  • Cedar provides the scale and capacity required for today’s modern research needs and will help transcend the previous possibilities of Canadian research and innovation in a number of key areas that directly benefit Canadians, including personalized medicine, green technologies, and artificial intelligence.

About Compute Canada

Compute Canada, in partnership with regional organizations ACENET, Calcul Québec, Compute Ontario and WestGrid, leads the acceleration of research and innovation by deploying state-of-the-art advanced research computing (ARC) systems, storage and software solutions. Together we provide essential ARC services and infrastructure for Canadian researchers and their collaborators in all academic and industrial sectors. Our world-class team of more than 200 experts employed by 37 partner universities and research institutions across the country provide direct support to research teams. Compute Canada is a proud ambassador for Canadian excellence in advanced research computing nationally and internationally.

About WestGrid

WestGrid brings together computing facilities, a network of technical experts, and advanced research computing (ARC) services to meet the needs of today’s researchers. As a not-for-profit corporation, WestGrid works collaboratively with members and partners in British Columbia, Alberta, Saskatchewan, and Manitoba to advance and support research, and to accelerate and sustain innovation and excellence in Western Canada. Together with three other regional organizations, WestGrid works with Compute Canada to provide essential ARC services and infrastructure for Canadian researchers and their collaborators in all academic and industrial sectors.

About Simon Fraser University

As Canada’s engaged university, SFU is defined by its dynamic integration of innovative education, cutting-edge research and far-reaching community engagement. SFU was founded almost 50 years ago with a mission to be a different kind of university—to bring an interdisciplinary approach to learning, embrace bold initiatives, and engage with communities near and far. Today, SFU is a leader amongst Canada’s comprehensive research universities and is ranked one of the top universities in the world under 50 years of age. With campuses in British Columbia’s three largest cities—Vancouver, Surrey and Burnaby—SFU has eight faculties, delivers almost 150 programs to over 30,000 students, and boasts more than 130,000 alumni in 130 countries around the world.


Source: Compute Canada

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This