Preparing for Aurora: Porting a Computational Chemistry Code to Exascale Architectures

July 8, 2021

July 8, 2021 — As part of a series aimed at sharing best practices in preparing applications for the Aurora supercomputer, ALCF is highlighting researchers’ efforts to optimize codes to run efficiently on graphics processing units.

Bringing computational chemistry into the exascale era

The NWChemEx project, when realized, has the potential to accelerate the development of next-generation batteries, drive the design of new functional materials, and advance the simulation of combustive chemical processes, in addition to addressing a wealth of other pressing challenges at the forefront of molecular modeling.

As the original NWChem code is some quarter-century old, the NWChemEx developers decided to rewrite the application from the ground up, with the ultimate goal of providing the framework for a next-generation molecular modeling package. The new package is capable of enabling chemistry research on a variety of leading-edge high-performance computing (HPC) systems. Prominent among these systems will be the forthcoming Aurora supercomputer, an exascale Intel-HPE machine to be housed at the Argonne Leadership Computing Facility (ALCF), a U.S. Department of Energy (DOE) Office of Science User Facility located at Argonne National Laboratory.

Support from sponsors including DOE’s Exascale Computing Project (ECP) and the ALCF’s Aurora Early Science Program (ESP) provided the opportunity to restructure core functionality—including the elimination of longstanding bottlenecks associated with the generally successful NWChem code—concurrent with the production of sophisticated physics models intended to leverage the computing power promised by the exascale era. In accordance with this strategy, the developers have adopted the Aurora-supported DPC++ programming model.

From a design point-of-view, the development team gives equal weight and consideration to physics models, architecture, and software structure, in order to fully harness large-scale HPC systems. To this end, NWChemEx incorporates numerous modern software-engineering techniques for C++, while GPU compatibility and support have been planned since the project’s initial stages, thereby orienting the code to the demands of exascale as matter of constitution.

In order to overcome prior communication-related bottlenecks, the developers have localized communication to the greatest possible extent.

Maximal flexibility

The developers pursue multiple approaches to achieve general compatibility. At the core of their work is NVIDIA-based development using the CUDA model. Part of the impetus for this was the availability of and access to GPUs consonant with the team’s experience, thereby maximizing their chances for an efficient and effective development process while accelerating the path to milestone successes.

Today the NWChemEx project encompasses programming models such as CUDA, HIP, and DPC++ in order to target various hardware accelerators. Moreover, the portability of DPC++ potentially makes it a portable programming model for future architectures. With DPC++, explicit control of memory management and data transfers can be scheduled between host and device. The NWChemEx project uses the newly introduced Unified Shared Memory (USM) feature from the SYCL 2020 standards. USM enables developers to work with pointers over the traditional use of buffers and accessors. Work is in progress to transition existing DPC++ code to other SYCL 2020 standards.

Tracking code performance

The transition to GPU has fundamentally altered the ways in which the developers think about how to structure data. Combined with their decision to rewrite the code from the ground up, this has enabled greater creativity and more opportunities to optimize NWChemEx’s ability to seamlessly run on both CPUs and GPUs; while GPUs have opened up new scales of computing power, they still unavoidably have limits and finite memory. This invites a division of labor.

To help localize communication and thereby reduce related bottlenecks, NWChemEx is being geared such that CPUs handle communication protocols as well as any other non-intensive components (that is conditional-structure-based algorithms). Anything else—anything “embarrassingly parallel” or computationally expensive—is to be processed by GPU.

In order to understand the degree to which the application is utilizing experimental hardware, the developers implement a multitiered analysis for tracking code performance.

As a first step, the developers regularly perform roofline analysis to determine the disposition and dependencies of their algorithms: Are they compute-bound? memory-bound? both?

Second, the developers in actuality perform computations on the relevant experimental hardware and compare them against theoretical performance capabilities. This identifies precisely how efficiently processors are being utilized. Finally, the developers conduct a postmortem analysis to pinpoint the origin of errors and establish the scope of improvement that theoretically can be expected.

Intel’s compatibility tool

For Intel hardware, the developers employ Intel’s DPC++ Compatibility Tool to port any existing optimized CUDA code and translate it to DPC++. The Compatibility Tool is sophisticated enough that it reliably determines apposite syntax in translating abstractions from CUDA to SYCL, greatly reducing the developers’ burden. Subsequent to translation, the developers finetune the DPC++ code to remove any redundancies or inelegancies introduced by automation.

The most crucial aspect to using the Compatibility Tool is that it translates—on a timescale ranging from minutes to hours, depending on complexity—entire projects, not just mere source codes or specific functions.

This two-step process—automated translation followed by manual finetuning—generates, from old CUDA code, performant DPC++ code that specifically targets Intel architectures.

NWChemEX was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation’s exascale computing imperative.

Additional support for this project was provided by the National Energy Research Scientific Computing Center (NERSC) Exascale Science Applications Program (NESAP) and the Oak Ridge Leadership Computing Facility’s (OLCF) Center for Accelerated Application Readiness (CAAR), as well as by NVIDIA, Intel, and HPE. NERSC and the OLCF are U.S. Department of Energy Office of Science User Facilities.

Click here to learn more.


Source: Nils Heinonen, Argonne Leadership Computing Facility

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire