Preparing for Exascale: Argonne’s Aurora to Accelerate Discoveries in Particle Physics at CERN

July 22, 2021

July 22, 2021 — The U.S. Department of Energy’s (DOE) Argonne National Laboratory will be home to one of the nation’s first exascale supercomputers when Aurora arrives in 2022. To prepare codes for the architecture and scale of the system, 15 research teams are taking part in the Aurora Early Science Program through the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility. With access to pre-production time on the supercomputer, these researchers will be among the first in the world to use an exascale machine for science.

Early philosophers first formulated the idea of the atom around the fifth century BCE. And just when we thought we understood its basic structure — protons, neutrons, and electrons — theories and technologies emerged to prove us wrong. Turns out, there are still more fundamental particles, like quarks, bound together by aptly named gluons.

Physicists discovered many of these and other particles in the enormous beasts of machines we call colliders, helping to develop what we know today as the Standard Model of physics. But there are questions that continue to nag: Is there something more fundamental still? Is the Standard Model all there is?

Determined to find out, the high energy physics community is working to integrate ever larger colliders and more sophisticated detectors with exascale computing systems. Among them is Walter Hopkins, an assistant physicist with Argonne National Laboratory and a collaborator with the ATLAS experiment at the Large Hadron Collider (LHC) at CERN, near Geneva, Switzerland.

Collaborating with researchers from both Argonne and Lawrence Berkeley National Lab, Hopkins leads an Aurora Early Science Program project through the ALCF to prepare software used in LHC simulations for exascale computing architectures, including Argonne’s forthcoming exascale machine, Aurora. At a billion billion calculations per second, Aurora is at the frontier of supercomputing and equal to the next challenge in particle physics, one of gargantuan magnitude.

The project was started several years ago by physicist and Argonne Distinguished Fellow James Proudfoot, who understood exascale’s distinct advantages in improving the impact of such complex science.

Aligning codes with new architecture

The collisions produced in the LHC occur in one of several detectors. The one on which the team is focused, ATLAS, witnesses billions of particle interactions every second and the signatures of new particles those collisions create in their wake.

One type of code the team is focused on, called event generators, simulates the underlying physics processes that occur at the interaction points within the 17-mile circumference collider ring. Getting the software-produced physics to align with that of the Standard Model helps researchers accurately simulate the collisions and predict the types, paths, and energies of the remnant particles.

Detecting physics in this way creates a mountain of data and requires an equally large chunk of computer time. And now, CERN is upping the ante as it readies to upgrade the LHC’s luminosity, allowing for more particle interactions and a 20-fold increase in data output.

While the team is looking to Aurora to handle this increase in their simulation requirements, the machine does not come without a few challenges of its own.

Workers inside ATLAS, one of several primary detectors for the Large Hadron Collider at CERN. ATLAS witnesses a billion particle interactions every second and the signatures of new particles created in near-speed-of-light proton-proton collisions. (Image: CERN)

Until recently, the event generators ran on computer CPUs (central processing units). While they work quickly, a CPU typically can only execute several operations at a time.

Aurora will be equipped with both CPUs and GPUs (graphic processing units), the choice of gamers everywhere. GPUs can handle many operations by breaking them into thousands of smaller tasks spread out across many cores, the engines that drive both types of unit.

But it takes a lot of effort to move CPU-based simulations onto GPUs in an efficient way, notes Hopkins. So, making this move to prepare for both Aurora and the onslaught of new data from LHC provides several challenges, which have become part of the team’s central focus.

“We want to be able to use Aurora to help us face these challenges,” says Hopkins, ​“but it requires us to study computing architectures that are new to us and our code base. For example, we’re focusing on a generator that is used in ATLAS, called MadGraph, and that runs on GPUs, which are more parallel and have different memory management requirements.”

A particle interaction simulation code, MadGraph was written by an international team of high energy physics theorists and supports the LHC’s simulation needs.

Simulation and AI support experimental work

The LHC has played a significant role in bringing prediction to reality. Most famously, the Standard Model predicted the existence of the Higgs boson, which conveys mass to all fundamental particles; ATLAS and its counterpart detector, CMS, confirmed Higgs’ existence in 2012.

But, as is so often the case in science, big discoveries can lead to more substantial questions, many of which are not predicted by the Standard Model. Why is the Higgs the mass that it is? What is dark matter?

“The reason for this very large upgrade to the LHC is that we’re hoping to find that needle in the haystack, that we’ll find some anomaly in the data set that offers a hint of physics beyond the Standard Model,” says Hopkins.

A combination of computational power, simulation, experiment, and artificial intelligence (AI) will dramatically help that search by providing accuracy in both prediction and identification.

When the ATLAS detector witnesses these particle collisions, for example, it records them as electronic signals. These are reconstructed as pixels of energy bursts that might correspond to an electron passing through.

“But just like in AI, where the canonical example is identifying cats and dogs in images, we have algorithms that identify and reconstruct those electronic signals into electrons, protons and other things,” says ALCF computer scientist Taylor Childers, a member of the team.

The reconstructed data from real collision events are then compared to the simulated data to look for differences in patterns. This is where accuracy in the physics models come to bear. If they’re working correctly and the real and simulated data doesn’t match, you continue to measure and rule out anomalies until it’s likely that you found that needle, that something that doesn’t fit the Standard Model.

The team is also using AI to quantify uncertainty, to determine the likelihood that they’ve identified a particle correctly.

Humans are capable of identifying particles to a limited extent — several parameters like momentum and position might tell us that a certain particle is an electron. But base that characterization on 10 parameters that are intimately tied together, then it’s another story, altogether.

“That’s where artificial intelligence really shines, especially if those input parameters are correlated, like the momentum of particles around an electron and the momentum of the electron itself,” says Hopkins. ​“These correlations are difficult to deal with analytically, but since we have so much simulation data, we can teach artificial intelligence and it can tell us, this is an electron with this likelihood because I have all of this input information.”

Exascale computing and the path forward

In advance of Aurora, the team continues work on the programming languages for the new architectures and the code to run on the Intel hardware that will be used on Aurora, as well as on hardware from other vendors.

“Part of the R&D that we do with our partner, Intel, is to make sure that the hardware is doing what we expect it to do and doing it efficiently,” says Childers. ​“Having a machine like Aurora will give us plenty of compute power and plenty of nodes to effectively reduce the time to solution, especially when we move to the upgraded LHC.”

The solution is an answer to a fundamental question — is there more beyond the Standard Model? — and one that could have unimagined repercussions a hundred years from now, notes Hopkins.

“Fundamental research can give us knowledge that may lead to societal transformation, but if we don’t do the research, it won’t lead to anything,” he says.

The ALCF is a DOE Office of Science User Facility.

Funding for this project was provided by DOE Office of Science: Offices of High Energy Physics and Advanced Scientific Computing Research. ATLAS is an international collaboration that benefits from DOE support.

About ALCF

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

Click here to learn more.


Source: JOHN SPIZZIRRI, ALCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Oak Ridge Supercomputer Enables Next-Gen Jet Turbine Research

July 27, 2021

Air travel is notoriously carbon-inefficient, with many airlines going as far as to offer purchasable carbon offsets to ease the guilt over large-footprint travel. But even over just the last decade, major aircraft model Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IBM Quantum System One assembled outside the U.S. and follows Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response w Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AWS Solution Channel

Accelerate innovation in healthcare and life sciences with AWS HPC

With Amazon Web Services, researchers can access purpose-built HPC tools and services along with scientific and technical expertise to accelerate the pace of discovery. Whether you are sequencing the human genome, using AI/ML for disease detection or running molecular dynamics simulations to develop lifesaving drugs, AWS has the infrastructure you need to run your HPC workloads. Read more…

PEARC21 Panel Reviews Eight New NSF-Funded HPC Systems Debuting in 2021

July 23, 2021

Over the past few years, the NSF has funded a number of HPC systems to further supply the open research community with computational resources to meet that community’s changing and expanding needs. A review of these systems at the PEARC21 conference (July 19-22) highlighted... Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make i Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

Summer Reading: “High-Performance Computing Is at an Inflection Point”

July 21, 2021

At last month’s 11th International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies (HEART), a group of researchers led by Martin Schulz of the Leibniz Supercomputing Center (Munich) presented a “position paper” in which they argue HPC architectural landscape... Read more…

PEARC21 Panel: Wafer-Scale-Engine Technology Accelerates Machine Learning, HPC

July 21, 2021

Early use of Cerebras’ CS-1 server and wafer-scale engine (WSE) has demonstrated promising acceleration of machine-learning algorithms, according to participa Read more…

15 Years Later, the Green500 Continues Its Push for Energy Efficiency as a First-Order Concern in HPC

July 15, 2021

The Green500 list, which ranks the most energy-efficient supercomputers in the world, has virtually always faced an uphill battle. As Wu Feng – custodian of the Green500 list and an associate professor at Virginia Tech – tells it, “noone" cared about energy efficiency in the early 2000s, when the seeds... Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire