Princeton Researchers Reveal Microscopic Quantum Correlations of Ultracold Molecules

February 2, 2023

Feb. 2, 2023 — Physicists are increasingly using ultracold molecules to study quantum states of matter. Many researchers contend that molecules have advantages over other alternatives, such as trapped ions, atoms or photons. These advantages suggest that molecular systems will play important roles in emerging quantum technologies. But, for a while now, research into molecular systems has advanced only so far because of long-standing challenges in preparing, controlling and observing molecules in a quantum regime.

Members of the Princeton research team. Front row (from left to right) Dr. Zoe Yan, Lysander Christakis, Jason Rosenberg. Back row (from left to right) Ravin Raj, Prof. Waseem Bakr, Prof. David Huse. Photo Credit: Richard Soden, Princeton Department of Physics.

Now, as chronicled in a recent paper in Nature, Princeton researchers have achieved a major breakthrough by microscopically studying molecular gases at a level never before achieved by previous research. The Princeton team, led by Waseem Bakr, associate professor of physics, was able to cool molecules down to ultracold temperatures, load them into an artificial crystal of light known as an optical lattice, and study their collective quantum behavior with high spatial resolution such that each individual molecule could be observed.

“We prepared the molecules in the gas in a well-defined internal and motional quantum state. The strong interactions between the molecules gave rise to subtle quantum correlations which we were able to detect for the first time,” said Bakr.

This experiment has profound implications for fundamental physics research, such as the study of many-body physics, which looks at the emergent behavior of ensembles of interacting quantum particles. The research also might accelerate the development of large-scale quantum computer systems.

In the quest to build large-scale quantum systems, both for quantum computing and for more general scientific applications, researchers have used a variety of different alternatives—everything from trapped ions and atoms to electrons confined in “quantum dots.” The goal is to transform these various alternatives into what are called qubits, which are the building blocks of a quantum computer system. Quantum computers have much greater computing power and capacity—exponentially greater—than classical computer systems, and can solve problems classical computers have difficulty solving.

Although so far no single type of qubit has emerged as the front-runner, Bakr and his team believe that molecular systems, while less explored than other platforms, hold particular promise.

One important advantage of using molecules in experimental settings—and especially as potential qubits—is the fact that molecules can store quantum information in an abundance of new ways not available to single atoms. For example, even for a simple molecule made of just two atoms, which can be visualized as a tiny dumbbell, quantum information can be stored in the rotational motion of the dumbbell or the shaking of its constituent atoms relative to each other. Another advantage of molecules is that they often have long-range interactions; they can interact with other molecules many sites away in an optical lattice, whereas atoms, for example, can only interact if they occupy the same site.

When using molecules to study many-body physics, these advantages are expected to enable researchers to explore fascinating new quantum phases of matter in these synthetic systems. However, a major problem, which Bakr and his team have been able to overcome in this experiment, is the microscopic characterization of these quantum states.

“The ability to probe the gas at the level of individual molecules is the novel aspect of our research,” said Bakr. “When you’re able to look at individual molecules, you can extract a lot more information about the many-body system.”

What Bakr means by extracting more information is the ability to observe and document the subtle correlations that characterize molecules in a quantum state—for example, correlations of their positions in the lattice or their rotational states.

“Researchers had prepared molecules in the ultracold regime before, but they couldn’t measure their correlations because they couldn’t see the single molecules,” said Jason Rosenberg, a graduate student in Princeton’s Department of Physics and the co-lead author of the paper. “By seeing each individual molecule, we can really characterize and explore the different quantum phases that are expected to emerge.”

While researchers have been studying many-body physics with atomic quantum gases for over two decades, molecular quantum gases have been much harder to tame. Unlike atoms, molecules can store energy by vibrating and rotating in many different ways. These various excitations are known as “degrees of freedom”—and their abundance is the characteristic that makes molecules difficult to control and manipulate experimentally.

“In order to study molecules in a quantum regime, we need to control all their degrees of freedom and place them in a well-defined quantum mechanical state,” said Bakr.

The researchers used a novel microscopy apparatus to probe the quantum state of individual ultracold molecules in an optical lattice and measure quantum correlations arising from interactions between them. Image created by Lysander Christakis, Princeton Department of Physics.

The researchers accomplished this precise level of control by first cooling two atomic gases of sodium and rubidium down to incredibly low temperatures that are measured in nanokelvins, or temperatures one-billionth of a degree Kelvin. At these ultracold temperatures, each of the two gases transition into a state of matter known as a Bose-Einstein condensate. In this ultracold environment, the researchers coax the atoms into pairing up into sodium-rubidium molecules in a well-defined internal quantum state. Then they use lasers to transfer the molecules into their absolute ground state where all rotations and vibrations of the molecules are frozen.

To maintain the quantum behavior of the molecules, they are isolated in a vacuum chamber and held in an optical lattice made of standing waves of light.

“We interfere a set of laser beams together and, from this, we create a corrugated landscape resembling an ‘egg carton’ in which the molecules sit,” said Rosenberg.

In the experiment, the researchers captured about one hundred molecules in this “egg carton” lattice. Then the researchers pushed the system out of equilibrium—and tracked what happened in the strongly interacting system.

“We gave the system a sudden ‘nudge,’” said Lysander Christakis, a graduate student and co-lead author of the paper. “We allowed the molecules to interact and build up quantum entanglement. This entanglement is reflected in subtle correlations, and the ability to probe the system at this microscopic level allows us to reveal these correlations—and learn about them.”

Entanglement is one of the most fascinating—and perplexing— properties of many-body quantum states. It describes a property of the subatomic world in which quantum elements—whether molecules, electrons, photons, or whatever—become inextricably linked with each other no matter the distance separating them. Entanglement is especially significant in quantum computing because it acts as a sort of computational multiplier. It is the crucial ingredient underlying the exponential speedup in solving problems with quantum computers.

The unparalleled control the researchers achieved in preparing and detecting the molecules has clear implications for quantum computing. But the researchers emphasize that, ultimately, the experiment is not necessarily about creating the most advanced qubits. Rather, it is, most importantly, a huge step forward in fundamental physics research.

“This research opens up a lot of possibilities to study really interesting problems in many-body physics,” said Christakis. “What we’ve demonstrated here is a complete platform for using ultracold molecules as a system to study complex quantum phenomena.”

Rosenberg concurred. “In this experiment, the molecules were frozen into individual sites on the lattice and quantum information was only stored in the rotational states of the molecules. Moving forward, it will be exciting to explore a whole other realm of interesting phenomena that appear when you allow the molecules to ‘hop’ from site to site. Our research has opened the door to investigating ever more exotic states of matter that can be prepared with these molecules, and now we can characterize them very well,” he concluded.

Other members of the Princeton team are graduate student Ravin Raj; Postdoctoral Research Fellow Zoe Yan; undergraduate Sungjae Chi; and theorists Alan Morningstar, postdoctoral fellow at Stanford University and David Huse, Princeton’s Cyrus Fogg Brackett Professor of Physics. The research was supported by the National Science Foundation and the David and Lucile Packard Foundation.

The study, “Probing site-resolved correlations in a spin system of ultracold molecules,” by Lysander Christakis, Jason S. Rosenberg, Ravin Raj, Sungjae Chi, Alan Morningstar, David A. Huse, Zoe Z. Yan, and Waseem S. Bakr was published online in Nature, on February 1, 2023. DOI: 10.1038/s41586-022-05558-4.


Source: Tom Garlinghouse, Princeton University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pegasus ‘Big Memory’ Supercomputer Now Deployed at the University of Tsukuba

March 25, 2023

In the bevy of news from Nvidia's GPU Technology Conference this week, another new system has come to light: Pegasus, which entered operations at the University of Tsukuba’s Center for Computational Sciences in January Read more…

EuroHPC Summit: Tackling Exascale, Energy, Industry & Sovereignty

March 24, 2023

As the 2023 EuroHPC Summit opened in Gothenburg on Monday, Herbert Zeisel – chair of EuroHPC’s Governing Board – commented that the undertaking had “left its teenage years behind.” Indeed, a sense of general ma Read more…

Is Fortran the Best Programming Language? Asking ChatGPT

March 23, 2023

I recently wrote about my experience with interviewing ChatGPT here. As promised, in this follow-on and conclusion of my interview, I focus on Fortran and other languages. All in good fun. I hope you enjoy the conclusion of my interview. After my programming language questions, I conclude with a few notes... Read more…

Nvidia Doubling Down on China Market in the Face of Tightened US Export Controls

March 23, 2023

Chipmakers are tightlipped on China activities following a U.S. crackdown on hardware exports to the country. But Nvidia remains unfazed, and is doubling down on China being an important country for its computing hardwar Read more…

Intel’s Sapphire Rapids Comes to Australia’s Gadi Supercomputer

March 22, 2023

Until the launch of Pawsey’s Setonix system last year, NCI’s Gadi system – launched in 2020 – was Australia’s most powerful publicly ranked supercomputer. Now, the system has received a major boost powered by I Read more…

AWS Solution Channel

Shutterstock_2206622211

Install optimized software with Spack configs for AWS ParallelCluster

With AWS ParallelCluster, you can choose a computing architecture that best matches your HPC application. But, HPC applications are complex. That means they can be challenging to get working well. Read more…

 

Get the latest on AI innovation at NVIDIA GTC

Join Microsoft at NVIDIA GTC, a free online global technology conference, March 20 – 23 to learn how organizations of any size can power AI innovation with purpose-built cloud infrastructure from Microsoft. Read more…

Nvidia Announces BlueField-3 GA, Oracle Cloud Is Early User

March 21, 2023

Nvidia today announced general availability for its BlueField-3 data processing unit (DPU) along with impressive early deployments including Oracle Cloud Infrastructure. First described in 2021 and now being delivered, B Read more…

Pegasus ‘Big Memory’ Supercomputer Now Deployed at the University of Tsukuba

March 25, 2023

In the bevy of news from Nvidia's GPU Technology Conference this week, another new system has come to light: Pegasus, which entered operations at the University Read more…

EuroHPC Summit: Tackling Exascale, Energy, Industry & Sovereignty

March 24, 2023

As the 2023 EuroHPC Summit opened in Gothenburg on Monday, Herbert Zeisel – chair of EuroHPC’s Governing Board – commented that the undertaking had “lef Read more…

Nvidia Doubling Down on China Market in the Face of Tightened US Export Controls

March 23, 2023

Chipmakers are tightlipped on China activities following a U.S. crackdown on hardware exports to the country. But Nvidia remains unfazed, and is doubling down o Read more…

Nvidia Announces BlueField-3 GA, Oracle Cloud Is Early User

March 21, 2023

Nvidia today announced general availability for its BlueField-3 data processing unit (DPU) along with impressive early deployments including Oracle Cloud Infras Read more…

Nvidia Announces ‘Tokyo-1’ Generative AI Supercomputer Amid Gradual H100 Rollout

March 21, 2023

Nvidia’s Hopper-generation H100 GPU is continuing its slow march toward “current-generation.” After Nvidia announced that the H100 was in “full producti Read more…

DGX Cloud Is Here: Nvidia’s AI Factory Services Start at $37,000

March 21, 2023

If you are a die-hard Nvidia loyalist, be ready to pay a fortune to use its AI factories in the cloud. Renting the GPU company's DGX Cloud, which is an all-inclusive AI supercomputer in the cloud, starts at $36,999 per instance for a month. The rental includes access to a cloud computer with eight Nvidia H100 or A100 GPUs and 640GB... Read more…

Quantum Bits: IBM-Cleveland Clinic Launch; D-Wave Adds Solver; DOE/AWS Offer QICK

March 20, 2023

IBM today launched the first installation of an IBM Quantum System One at a collaborator site in the U.S. – this one is at the Cleveland Clinic where IBM’s Read more…

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire