Pritzker Molecular Engineering Researchers ‘Split’ Phonons – or Sound – in Step Toward New Type of Quantum Computer

June 9, 2023

June 9, 2023 — When we listen to our favorite song, what sounds like a continuous wave of music is actually transmitted as tiny packets of quantum particles called phonons.

In first-of-their-kind experiments, a research team at the Pritzker School of Molecular Engineering took critical steps toward creating a linear mechanical quantum computer. Photo credit: Joel Wintermantle.

The laws of quantum mechanics hold that quantum particles are fundamentally indivisible and therefore cannot be split, but researchers at the Pritzker School of Molecular Engineering (PME) at the University of Chicago are exploring what happens when you try to split a phonon.

In two experiments – the first of their kinds – a team led by Prof. Andrew Cleland used a device called an acoustic beamsplitter to “split” phonons and thereby demonstrate their quantum properties. By showing that the beamsplitter can be used to both induce a special quantum superposition state for one phonon, and further create interference between two phonons, the research team took the first critical steps toward creating a new kind of quantum computer.

The results are newly published in the journal Science and built on years of breakthrough work on phonons by the team at Pritzker Molecular Engineering.

Graduate student Hong Qiao (left) and graduate student Chris Conner work in the lab of Prof. Andrew Cleland. Photo credit: Joel Wintermantle.

“Splitting” a Phonon into a Superposition

In the experiments, researchers used phonons that have roughly a million times higher pitch than can be heard with the human ear. Previously, Cleland and his team figured out how to create and detect single phonons and were the first to entangle two phonons.

To demonstrate these phonons’ quantum capabilities, the team — including Cleland’s graduate student Hong Qiao — created a beamsplitter that can split a beam of sound in half, transmitting half and reflecting the other half back to its source (beamsplitters already exist for light and have been used to demonstrate the quantum capabilities of photons). The whole system, including two qubits to generate and detect phonons, operates at extremely low temperatures and uses individual surface acoustic wave phonons, which travel on the surface of a material, in this case lithium niobate.

However, quantum physics says a single phonon is indivisible. So when the team sent a single phonon to the beamsplitter, instead of splitting, it went into a quantum superposition, a state where the phonon is both reflected and transmitted at the same time. Observing (measuring) the phonon causes this quantum state to collapse into one of the two outputs.

The team found a way to maintain that superposition state by capturing the phonon in two qubits. A qubit is the basic unit of information in quantum computing. Only one qubit actually captures the phonon, but researchers cannot tell which qubit until post-measurement: In other words, the quantum superposition is transferred from the phonon to the two qubits. The researchers measured this two-qubit superposition, yielding “gold standard proof that the beamsplitter is creating a quantum entangled state,” said Cleland, who is also a scientist at the U.S. Department of Energy’s Argonne National Laboratory.

Showing Phonons Behave Like Photons

In the second experiment, the team wanted to show an additional fundamental quantum effect that had first been demonstrated with photons in the 1980s. Now known as the Hong-Ou-Mandel effect, when two identical photons are sent from opposite directions into a beamsplitter at the same time, the superposed outputs interfere so that both photons are always found traveling together, in one or the other output directions.

Importantly, the same happened when the team did the experiment with phonons – the superposed output means that only one of the two detector qubits captures phonons, going one way but not the other. Though the qubits only have the ability to capture a single phonon at a time, not two, the qubit placed in the opposite direction never “hears” a phonon, giving proof that both phonons are going in the same direction. This phenomenon is called two-phonon interference.

Getting phonons into these quantum-entangled state is a much bigger leap than doing so with photons. The phonons used here, though indivisible, still require quadrillions of atoms working together in a quantum mechanical fashion. And if quantum mechanics rules physics at only the tiniest realm, it raises questions of where that realm ends and classical physics begins; this experiment further probes that transition.

“Those atoms all have to behave coherently together to support what quantum mechanics says they should do,” Cleland said. “It’s kind of amazingThe bizarre aspects of quantum mechanics are not limited by size.”

The new paper’s authors included (from left) graduate student Rhys Povey, graduate student Chris Conner, graduate student Jacob Miller, graduate student Yash Joshi, graduate student Hong Qiao (lead author of the paper), graduate student Haoxiong Yan, graduate student Xuntao Wu, and postdoctoral researcher Gustav Andersson. Photo credit: Joel Wintermantle.

Creating a New Linear Mechanical Quantum Computer

The power of quantum computers lies in the “weirdness” of the quantum realm. By harnessing the strange quantum powers of superposition and entanglement, researchers hope to solve previously intractable problems. One approach to doing this is to use photons, in what is called a “linear optical quantum computer.”

A linear mechanical quantum computer – which would use phonons instead of photons – itself could have the ability to compute new kinds of calculations.  “The success of the two-phonon interference experiment is the final piece showing that phonons are equivalent to photons,” Cleland said. “The outcome confirms we have the technology we need to build a linear mechanical quantum computer.”

Unlike photon-based linear optical quantum computing, the UChicago platform directly integrates phonons with qubits. That means phonons could further be part of a hybrid quantum computer that combines the best of linear quantum computers with the power of qubit-based quantum computers.

The next step is to create a logic gate – an essential part of computing – using phonons, on which Cleland and his team are currently conducting research.

Other authors on the paper include É. Dumur, G. Andersson, H. Yan, M.-H. Chou, J. Grebel, C. R. Conner, Y. J. Joshi, J. M. Miller, R. G. Povey, and X. Wu.

Citation: “Splitting phonons: Building a platform for linear mechanical quantum computing.” Qiao et al, Science, Thursday, 8 June 2023, DOI: 10.1126/science.adg8715

Funding: Air Force Office of Scientific Research, Army Research Laboratory, the Department of Energy’s Office of Science National Quantum Information Science Research Centers, National Science Foundation.


Source: Emily Ayshford, Pritzker School of Molecular Engineering, UChicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Watsonx Brings AI Visibility to Banking Systems

September 21, 2023

A new set of AI-based code conversion tools is available with IBM watsonx. Before introducing the new "watsonx," let's talk about the previous generation Watson, perhaps better known as "Jeopardy!-Watson." The origi Read more…

Researchers Advance Topological Superconductors for Quantum Computing

September 21, 2023

Quantum computers process information using quantum bits, or qubits, based on fragile, short-lived quantum mechanical states. To make qubits robust and tailor them for applications, researchers from the Department of Ene Read more…

Fortran: Still Compiling After All These Years

September 20, 2023

A recent article appearing in EDN (Electrical Design News) points out that on this day, September 20, 1954, the first Fortran program ran on a mainframe computer. Originally developed by IBM, Fortran (or FORmula TRANslat Read more…

Intel’s Gelsinger Lays Out Vision and Map at Innovation 2023 Conference

September 20, 2023

Intel’s sprawling, optimistic vision for the future was on full display yesterday in CEO Pat Gelsinger’s opening keynote at the Intel Innovation 2023 conference being held in San Jose. While technical details were sc Read more…

Intel Showcases “AI Everywhere” Strategy in MLPerf Inferencing v3.1

September 18, 2023

Intel used the latest MLPerf Inference (version 3.1) results as a platform to reinforce its developing “AI Everywhere” vision, which rests upon 4th gen Xeon CPUs and Gaudi2 (Habana) accelerators. Both fared well on t Read more…

AWS Solution Channel

Shutterstock 1679562793

How Maxar Builds Short Duration ‘Bursty’ HPC Workloads on AWS at Scale

Introduction

High performance computing (HPC) has been key to solving the most complex problems in every industry and has been steadily changing the way we work and live. Read more…

QCT Solution Channel

QCT and Intel Codeveloped QCT DevCloud Program to Jumpstart HPC and AI Development

Organizations and developers face a variety of issues in developing and testing HPC and AI applications. Challenges they face can range from simply having access to a wide variety of hardware, frameworks, and toolkits to time spent on installation, development, testing, and troubleshooting which can lead to increases in cost. Read more…

Survey: Majority of US Workers Are Already Using Generative AI Tools, But Company Policies Trail Behind

September 18, 2023

A new survey from the Conference Board indicates that More than half of US employees are already using generative AI tools, at least occasionally, to accomplish work-related tasks. Yet some three-quarters of companies st Read more…

Watsonx Brings AI Visibility to Banking Systems

September 21, 2023

A new set of AI-based code conversion tools is available with IBM watsonx. Before introducing the new "watsonx," let's talk about the previous generation Watson Read more…

Intel’s Gelsinger Lays Out Vision and Map at Innovation 2023 Conference

September 20, 2023

Intel’s sprawling, optimistic vision for the future was on full display yesterday in CEO Pat Gelsinger’s opening keynote at the Intel Innovation 2023 confer Read more…

Intel Showcases “AI Everywhere” Strategy in MLPerf Inferencing v3.1

September 18, 2023

Intel used the latest MLPerf Inference (version 3.1) results as a platform to reinforce its developing “AI Everywhere” vision, which rests upon 4th gen Xeon Read more…

China’s Quiet Journey into Exascale Computing

September 17, 2023

As reported in the South China Morning Post HPC pioneer Jack Dongarra mentioned the lack of benchmarks from recent HPC systems built by China. “It’s a we Read more…

Nvidia Releasing Open-Source Optimized Tensor RT-LLM Runtime with Commercial Foundational AI Models to Follow Later This Year

September 14, 2023

Nvidia's large-language models will become generally available later this year, the company confirmed. Organizations widely rely on Nvidia's graphics process Read more…

MLPerf Releases Latest Inference Results and New Storage Benchmark

September 13, 2023

MLCommons this week issued the results of its latest MLPerf Inference (v3.1) benchmark exercise. Nvidia was again the top performing accelerator, but Intel (Xeo Read more…

Need Some H100 GPUs? Nvidia is Listening

September 12, 2023

During a recent earnings call, Tesla CEO Elon Musk, the world's richest man, summed up the shortage of Nvidia enterprise GPUs in a few sentences.  "We're us Read more…

Intel Getting Squeezed and Benefiting from Nvidia GPU Shortages

September 10, 2023

The shortage of Nvidia's GPUs has customers searching for scrap heap to kickstart makeshift AI projects, and Intel is benefitting from it. Customers seeking qui Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

ISC 2023 Booth Videos

Cornelis Networks @ ISC23
Dell Technologies @ ISC23
Intel @ ISC23
Lenovo @ ISC23
Microsoft @ ISC23
ISC23 Playlist
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire