PSC-Associated Collaboration Begins Mapping Human Body to Single-Cell Level

October 10, 2019

Oct. 10, 2019 — A national collaboration of scientists has taken the first steps to creating a 3D map of the human body, down to the level of single cells and smaller. In an article in the prestigious journal Nature, the Human Biomolecular Atlas Program (HuBMAP) Consortium charts out its goals for creating an interactive map that scientists can use to navigate through the human body to answer questions about its functions in health and disease. HuBMAP will continue over the next four years with an anticipated total of $54 million in grants, pending availability of resources, from the NIH Common Fund over the lifespan of the program.The Pittsburgh Supercomputing Center (PSC), Carnegie Mellon University (CMU), and the University of Pittsburgh are playing leading roles in the consortium.

“This project will transform our understanding of the human body and how it works,” said Michael Snyder, PhD, principal author of the article and Principal Investigator/Project Leader for the Stanford Tissue Mapping Center of HuBMAP. “It is a major step forward toward understanding how our ten trillion cells are organized and work together to make a complicated human being. By mapping these cells in a normal person, we will better understand what is happening during human disease.”

Understanding important high-resolution features of cells in tissues remains a challenge. Recently developed technologies, including many supported through NIH programs, allow researchers to explore the organization of large numbers of cells at the individual cell level. These advances opened the possibility to study and map the organization of all cells within tissues or organs across the human body. While HuBMAP is not anticipated to map the entire body, it will get the work started, providing a framework for more complete mapping and making data available to the research community for further study.

HuBMAP’s tissue-mapping centers will collect and analyze tissues from mostly healthy men and women of different ethnicities and ages. Organs to be sampled include discrete organs such as the kidney, ureter, bladder, lung, breast, small intestine and colon; the blood vessels; and immune-system organs such as the lymphatic tissues, spleen, thymus and lymph nodes. The scientists will obtain consent from participants over and above standard regulations when possible in order to make the data available for “open access.” The goal is to help the open biomedical research community make maximum use of HuBMAP’s data.

HuBMAP is funded by the NIH Common Fund. It is managed by a trans-NIH working group and led by staff from the Common Fund; National Heart, Lung, and Blood Institute; National Institute of Biomedical Imaging and Bioengineering; and the National Institute of Diabetes and Digestive and Kidney Diseases.

“NIH Common Fund programs are intended to have far-reaching influences across many areas of biomedical science,” said James M. Anderson, MD, PhD, Director of the Division of Program Coordination, Planning, and Strategic Initiatives, which oversees the Common Fund. “HuBMAP plans to provide a framework for researchers, scientists, and clinicians to understand the organization and function of the human body at the biomolecular level. The new technologies and high-resolution data created by HuBMAP will change our view of the human body.”

In order to make optimal use of the diversity of data that the HuBMAP scientists expect to collect, the collaborators will develop new tools to visualize and analyze microscopic images. Their aim is to bridge the gaps in resolution between current methods of making images of the body, from photography to light microscopy to electron microscopy to biochemistry.

In addition to working with its own data, software and computational resources, HuBMAP will cooperate with scientists in the international community as part of a global effort to build high-resolution maps of the human body. HuBMAP scientists expect that their initial maps will represent the “tip of the iceberg;” while they hope to contribute to the understanding of human health and disease, they also see their efforts serving as a foundation for future applications of anatomical data to diagnose, study and treat disease.

Several research institutions in Pittsburgh are playing key roles in HuBMAP.

Scientists at the Pittsburgh Supercomputing Center (PSC)—a joint center of CMU and Pitt—and Pitt’s Department of Biomedical Informatics (DBMI) lead the central Infrastructure and Engagement Component (IEC) of HuBMAP. Initially, the CMU/Pitt collaboration had been named to the infrastructure component, but has taken on the additional role of engagement and outreach.

The IEC is developing and implementing data and computational infrastructure to unify the HuBMAP Consortium to enable the first public HuBMAP data release, targeted for June 2020. Working across the Consortium and more broadly, the IEC will ensure that the initial data release has substantial scientific value and leads to a subsequent quarterly cadence of data releases together with maps and tools of increasing investigative power.

“HuBMAP will greatly advance our understanding of the human body by providing not only data at unprecedented resolution, but also analytic tools and computational resources to unlock the value of that very large data,” said Nick Nystrom, PhD, Principal Investigator for the IEC and PSC Chief Scientist. “Providing ways for people to participate without having to be computer experts and enabling scientific reproducibility will democratize access to our unique HuBMAP dataset.”

PSC and DBMI bring great depth in the development of flexible, user-friendly, scalable infrastructure together with extensive experience in genomics, imaging, and medical data. Through a subcontract to Knowinnovation Inc., the IEC brings in additional talent for maximizing the effectiveness of key meetings and broadening engagement. The IEC has received over $2.8 million in funding from NIH to date.

“We are pleased to lead, with our colleagues across Pittsburgh, in this exciting effort across dozens of institutions to collect, organize, and provide vast and deep human biological and medical data,” said Jonathan Silverstein, MD, Principal Investigator for the IEC and Chief Research Informatics Officer for Pitt’s Health Sciences and Institute for Precision Medicine.
The HuBMAP Computational Tools Center, led by the CMU School of Computer Science (SCS), will focus on the computational methods necessary for processing massive amounts of raw data, constructing the high-resolution tissue maps and building an atlas of tissue maps. The Computational Tools Center will receive $2 million in NIH funding, supporting work by SCS scientists and their colleagues at the University of California Santa Cruz and the Wellcome Sanger Institute in the U.K.

Read the Nature article here

About Pittsburgh Supercomputing Center

PSC is a joint effort of Carnegie Mellon University and the University of Pittsburgh. Established in 1986, PSC is supported by several federal agencies, the Commonwealth of Pennsylvania and private industry and is a leading partner in XSEDE (Extreme Science and Engineering Discovery Environment), the National Science Foundation cyber-infrastructure program.


Source: Pittsburgh Supercomputing Center

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire