PSC’s Bridges Helps Scientists Understand Monkey Protein that Confers Immunity to HIV

November 12, 2018

Nov. 12, 2018 — Scientists have scored a number of victories against HIV, the virus that causes AIDS. But these victories are incomplete. We can hold the virus in check, but not cure it. We can reduce the chances someone will be infected, but do not have a surefire way to prevent infection. Scientists from the University of Delaware and the University of Pittsburgh are using the XSEDE resource Bridges at the Pittsburgh Supercomputing Center to investigate how one protein prevents HIV from infecting monkeys. Understanding how it does that, and why the human version of that protein doesn’t, promises a completely new avenue for stopping HIV in its tracks.

Why It’s Important:

Globally, nearly a million people died of AIDS in 2017, according to the World Health Organization. That number is down from its peak in 2004-2005. Still, it’s fair to say that we have HIV, the AIDS virus, on the ropes but have not yet knocked it out. We can control the virus in infected people and extend their lives. But we can’t cure them. We can give drugs that reduce the risk of infection to people at high risk. But we can’t prevent infection. The drugs we have already are lifesavers. Still, new avenues for attacking the virus might be needed before cures, and true preventives, are possible.

Possible new targets for therapy are the reason why Juan Perilla of the University of Delaware and colleagues there and at the University of Pittsburgh are interested in a protein called TRIM5α (“trim five alpha”). In old-world and rhesus monkeys, TRIM5α provides a hard stop to the HIV’s ability to infect cells. Its ability to destabilize HIV’s capsid, the protective shell around the virus’s genetic material, is what makes HIV unable to infect monkeys. On the other hand, humans do have a version of TRIM5α—but for reasons we don’t yet understand it can’t stop the virus like the monkey version does. Perilla and his collaborators would like to find out how monkey TRIM5α works, and possibly how the human version can be helped to do the same trick. This knowledge could provide a new way of attacking the virus that might stop HIV much more fully than the current generation of drugs.

How PSC and XSEDE Helped:

The scientists studied the problem in two ways. Angela Gronenborn of Pitt and Tatyana Polenova of Delaware used a lab technique called nuclear magnetic resonance (NMR) to study which parts of the virus’s capsid protein, called CA, are affected when TRIM5α is present. NMR can tell what parts of the protein are affected, but not how they’re affected. So, alongside the lab work, Perilla and his graduate students studied the system using simulations on PSC’s Bridges supercomputer.

The simulation was truly massive. Studying the interaction between a single copy each of the CA and TRIM5α proteins would be a significant computational problem. But Perilla’s group took it much farther than that. They created a virtual version of the entire viral capsid, containing more than 1,000 copies of CA—a total of roughly four million atoms. In turn, the scientists embedded their simulated proteins in a box of simulated water molecules. The result was a system containing more than 64 million atoms.

The researchers simulated the molecules’ interactions, watching how TRIM5α affects the capsid. Analyzing the many interactions in the simulation required repeating the simulation under different conditions, which in turn required massive computer memory (RAM). The XSEDE-allocated Bridges’ “large memory” nodes were perfect for the job. They contain 3 terabytes of RAM, which is 96 times the RAM in a high-end laptop.

The simulated results obtained from Bridges agreed perfectly with the NMR lab results. That gave the scientists confidence that the simulations were accurately capturing the system. The simulation also painted an intriguing picture. Just as a soccer ball needs six-sided and five-sided panels to be round, the HIV capsid needs CA proteins grouped in five-sided “pentamers” and six-sided “hexamers” to achieve its normal, oblong shape. The effect of TRIM5α on the CA proteins was different depending on which of the two shapes they were forming, though. Normally the CA proteins, even when they’re linked together to form the capsid shell, wriggle and writhe. But in the presence of TRIM5α, the CA proteins in the pentamers were unusually stiff, moving far less than they normally do. This disruption of the pentamers makes the capsid unstable. In turn, that makes the virus unable to deliver the its genetic material properly when it enters a host cell. The infection is stopped in its tracks. The scientists reported their results in the Proceedings of the National Academy of Sciences, USA, in October 2018.

The researchers are now studying destabilization of the capsid in more detail. Their hope is that, in the long term, better knowledge of the system and how the small differences between human and monkey TRIM5α lead to such large differences in effect can offer clues to helping the human version work better, and possibly prevent infection in humans.


Source: PSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire