Purdue’s NEW LIMITS Center to Advance Computer Chip Parts

February 26, 2018

WEST LAFAYETTE, Ind., Feb. 26, 2018 — Purdue University is leading a new center to overcome the challenges of critical parts needed for low-power, high-performance computer chips in consumer electronics, vehicles and national security.

The NEW LIMITS center is a three-year project supported by $4.5 million from a collaboration between the Semiconductor Research Corp. (SRC) and the National Institute of Standards and Technology (NIST). NEW LIMITS will be one of four centers in the SRC nanoelectronics Computing Research (nCORE) program, and the only center selected to receive NIST funding. The SRC consortium operates university research programs both in the U.S. and globally, connecting them with sponsors in the semiconductor research industry. NIST, a non-regulatory agency of the U.S. Department of Commerce, advances measurement science, standards and technology to promote U.S. innovation and competitiveness. Purdue is working on the project with researchers from Pennsylvania State University, the University of Michigan, the University of Texas at Dallas and Stanford University.

Established in January, NEW LIMITS is named for three aspects of a computer chip that the center’s researchers aim to improve: NEW materials for LogIc, Memory and InTerconnectS.

 “We won’t be able to deliver a new chip to the industry, but we will provide viable solutions for these three major components,” said Zhihong Chen, Purdue professor of electrical and computer engineering (ECE), who will be directing NEW LIMITS. Other Purdue faculty involved in the center are Joerg Appenzeller, the Barry M. and Patricia L. Epstein Professor of ECE, and assistant ECE professor Sumeet Gupta.

As devices such as smartphones get thinner and more advanced, the chips that enable their “smart” characteristics need to adapt. Industries have so far downsized the basic components of computer chips so much that they struggle to provide the desired performance at low power that new technologies need. Major corporations rely upon university research centers to investigate ways to prepare chips for increasingly more complex uses.

“There comes a point when conventional chip components can’t be scaled down any further,” Chen said.

The NEW LIMITS center at Purdue University will be improving parts of a computer chip to meet the demands of technological advancements. (Purdue University photo/Vincent Walter)

To make computers faster with less power, Purdue researchers will develop new materials for enhancing a chip’s logic, memory and interconnects.

A computer chip is made up of silicon complementary metal-oxide-semiconductor (CMOS) transistors, which switch electrical signals, and copper interconnects that transfer those signals between transistors. Technological advancements have required smaller transistors that tend to overheat and more compact interconnects that do not pass currents as efficiently. The copper of interconnects also tends to diffuse into other areas of the chip and short out the transistors they are trying to connect.

The redesign of interconnects is a priority for the center. “If the copper shorts out at the wrong spots, then the entire chip can fail,” Chen said.

Chen and other researchers believe that using ultra-thin 2-D materials with a thickness of merely a couple of atoms, as opposed to bulkier 3-D materials, enhance silicon transistor and copper interconnect performance while also maintaining a smaller size. “Logic” in this sense would refer to blanketing silicon and copper with a single layer of atoms to double or triple the current drive.

This method would be more reasonable than replacing silicon in particular, Chen said, as 20 years of research still has not found a comparable replacement. “We actually do not need to replace it,” she said. “We would instead largely enhance the performance of current technology.”

As the center addresses interconnect and logic aspects of a chip’s performance, the researchers will also consolidate data storage and retrieval into a new type of memory cell. This would make computing and storage more efficient in a chip, and then for the computer as a whole.

“Collaboration with notable partners like SRC, NIST and the leading research institutions involved on this project are crucial to realizing the transformational scientific breakthroughs that will power the future of electronics,” said Suresh Garimella, Purdue’s executive vice president for research and partnerships and the R. Eugene and Susie E. Goodson Distinguished Professor of Mechanical Engineering.

Chen, Appenzeller and a University of Michigan professor will specifically design and fabricate logic and memory devices and interconnects. The center combines expertise in 3-D materials and faculty from other universities who will investigate and manufacture the 2-D materials needed for each of these chip components. Gupta will design circuits with logic in memory functionalities and help with a benchmarking device and circuit performance for the semiconductor industry’s needs.

“SRC’s nanoelectronic computing research program offers important support to this exciting area,” said Mung Chiang, Purdue’s John A. Edwardson Dean of the College of Engineering. “As the name suggests, this center will develop new materials with unique electronic properties and push the limit of computing.”

Researchers have no choice but to push the limit of CMOS technology at this stage, Chen said. “Everything is counting on that chip’s performance.”

Information about the SRC can be found at https://www.srg.org/, and the NIST at https://www.nist.gov.


Source: Kayla Wiles, Purdue University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire