Q-CTRL’s New Results with IBM Hardware Mark Progress in Quantum Optimization

June 5, 2024

LONDON, June 5, 2024 — Q-CTRL today announced newly published results that demonstrate a boost of more than 4X in the size of an optimization problem that can be accurately solved, and show for the first time that a utility-scale IBM quantum computer can outperform competitive annealer and trapped ion technologies. The recent results solidify Q-CTRL’s position at the forefront of the industry and reset expectations for when and how quantum advantage may arrive.

Quantum optimization is one of the most promising quantum computing applications with the potential to deliver major enhancements to critical problems in transport, logistics, machine learning, and financial fraud detection. McKinsey suggests that quantum applications in logistics alone are worth over $200-500B/y by 2035 – if the quantum sector can successfully solve them.

Previous third-party benchmark quantum optimization experiments have indicated that, despite their promise, gate-based quantum computers have struggled to live up to their potential because of hardware errors. In previous tests of optimization algorithms, the outputs of the gate-based quantum computers were little different than random outputs or provided modest benefits under limited circumstances.

As a result, an alternative architecture known as a quantum annealer was believed – and shown in experiments – to be the preferred choice for exploring industrially relevant optimization problems. Today’s quantum computers were thought to be far away from being able to solve quantum optimization problems that matter to industry.

Q-CTRL’s recent results upend this broadly accepted industry narrative by addressing the error challenge. Their methods combine innovations in the problem’s hardware execution with the company’s performance-management infrastructure software run on IBM’s utility-scale quantum computers. This combination delivered improved performance previously limited by errors with no changes to the hardware.

Q-CTRL’s results on IBM’s hardware enable quantum optimization algorithms to more consistently find the correct solution to a range of challenging optimization problems at larger scales than ever before. The results show that this combination could practically outperform published results from both trapped-ion devices and annealers by large margins for some problems. Not only can users now solve important problems that were previously out of reach, the dramatic boost in the likelihood of finding the correct solution translates directly into cost savings for users as fewer attempts are required to return the correct solution.

“To bring useful quantum computing to the world we need to both solve the problem of building a quantum computer and discover more practical algorithms,” said Jay Gambetta, IBM Fellow and VP of IBM Quantum. “At IBM we are committed to the first, with our development roadmap. For the second, I am excited to see Q-CTRL taking an important step to deliver practical solutions to industry-relevant optimization problems. Their software solution with an improved QAOA algorithm combined with our utility-scale quantum computers shows that quantum advantage for optimization problems is much closer than we originally thought.”

“It has traditionally been difficult for anyone, even specialists, to take full advantage of what’s possible with utility-scale machines,” said Q-CTRL CEO and Founder Prof. Michael J. Biercuk. “These new results reset expectations of what’s achievable with today’s machines, unambiguously demonstrating that we can now correctly solve industrially relevant optimization problems that have previously been out of reach for quantum computers. There’s a new line of sight to potential quantum advantage in quantum optimization, and best of all, this capability is accessible to anyone without the need to be a quantum expert.”

“This result will be welcome news for those seeking early quantum advantage – we’re finally working with a potentially useful number of qubits,” said David Shaw, Chief Quantum Analyst at Global Quantum Intelligence. “We can expect IBM and others to push further on underlying hardware fidelity, but crucially midstack infrastructure software is also making a bigger than expected contribution for algorithm-specific error suppression and mitigation.”

“Performance management tools like those provided by Q-CTRL on IBM hardware are essential to hardware, algorithm, and application developers to address the noise challenge collaboratively and unlock the potential of quantum computing,” said Julian van Velzen, CTIO & Head of Capgemini’s Quantum Lab. “As demonstrated by this work, effectively utilising such tools can elevate the performance of the hardware to a whole new level and bring a potential quantum advantage years closer.”

The achievements are detailed in the technical paper published ahead of The Economist’s Commercialising Quantum Global event on June 5th and 6th, 2024, where these breakthroughs will be showcased publicly for the first time. Any user can get started with Q-CTRL’s performance-enhancement software and an account on IBM Quantum’s cloud platform to validate the results and achieve true value at utility scale.

About Q-CTRL

Q-CTRL’s quantum control infrastructure software for R&D professionals and quantum computing end users delivers the highest performance error-correcting and suppressing techniques globally and provides a unique capability accelerating the pathway to the first useful quantum computers and quantum sensors. Q-CTRL operates a globally leading quantum sensing division focused on software-level innovation for strategic capability. Q-CTRL also has developed Black Opal, an edtech platform that enables users to quickly learn quantum computing. Founded by Michael J. Biercuk in 2017, Q-CTRL has pioneered the quantum infrastructure software segment and has become the leading product-focused software company in the broader quantum sector. Q-CTRL has been an inaugural member of the IBM Quantum Network startup program since 2018, and its performance management software now runs natively on IBM quantum computers. The company has international headquarters in Sydney, Los Angeles, Berlin, and Oxford.


Source: Q-CTRL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Weekly Wire Roundup: July 8-July 12, 2024

July 12, 2024

HPC news can get pretty sleepy in June and July, but this week saw a bump in activity midweek as Americans realized they still had work to do after the previous holiday weekend. The world outside the United States also s Read more…

Nvidia, Intel not Welcomed in New Apple AI and HPC Development Tools

July 12, 2024

New Mac developer tools will leverage Apple's homegrown chips, limiting HPC users' ability to use parallel programming frameworks from Intel or Nvidia. Apple's latest programming framework, Xcode 16, was introduced at Read more…

Virga: Australia’s New HPC and AI Powerhouse

July 11, 2024

Australia has officially added another supercomputer to the TOP500 list with the implementation of Virga. Officially coming online in June 2024, Virga is the newest HPC system to come out of the Australian Commonwealth S Read more…

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and implementation phases of the Quantum Quantum Science and Technolo Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the software, and selecting the best user interface. The National Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three of the 10 highest-ranking Top500 systems, but some other ne Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

US Senators Propose $32 Billion in Annual AI Spending, but Critics Remain Unconvinced

July 5, 2024

Senate leader, Chuck Schumer, and three colleagues want the US government to spend at least $32 billion annually by 2026 for non-defense related AI systems.  T Read more…

Point and Click HPC: High-Performance Desktops

July 3, 2024

Recently, an interesting paper appeared on Arvix called Use Cases for High-Performance Research Desktops. To be clear, the term desktop in this context does not Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Leading Solution Providers

Contributors

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire