Q&A with Edmon Begoli: The Need to Quantify Uncertainty in Medical AI

August 30, 2019

In the following interview by Elizabeth Rosenthal, Begoli, Edmon Director of Scalable Protected Data Facilities in ORNL’s Computing and Computational Sciences Directorate, elaborates on the idea that artificial intelligence (AI) techniques have the potential to support medical decision-making, from diagnosing diseases to prescribing treatments. The interview is below.


August 30, 2019 — Artificial intelligence (AI) techniques have the potential to support medical decision-making, from diagnosing diseases to prescribing treatments. But to prioritize patient safety, researchers and practitioners must first ensure such methods are accurate.

In a 2019 perspective published in Nature Machine Intelligence, Edmon Begoli of Oak Ridge National Laboratory, Tanmoy Bhattacharya of Los Alamos National Laboratory, and Dimitri Kusnezov of the US Department of Energy discuss a need for and propose a path to establish safe, reliable AI practices for medical applications.

Specifically, they argue that applying the field of uncertainty quantification (UQ) to medical AI could revolutionize healthcare and save lives. UQ refers to the scientific process of predicting outcomes based on limited data to provide measures of confidence that are currently used to inform decisions vital to national and international security. Currently, no such systematic approach exists for AI.

With UQ, the authors anticipate that AI tools such as machine learning and deep learning could complete vital tasks such as analyzing and learning from datasets containing thousands of MRI scans with cancerous tumors to efficiently and accurately detect evidence of disease.

In the following interview, Begoli, Director of Scalable Protected Data Facilities in ORNL’s Computing and Computational Sciences Directorate, elaborates on this idea.

Q: What is UQ and what role could it play in the field of AI?

Begoli: UQ assesses the accuracy of computational models that influence important decision-making processes, aiming to quantify how much we can trust AI-generated decisions. This practice has had a particularly relevant application in the field of nuclear stewardship, in which supercomputer simulations of nuclear processes have replaced physical testing. UQ ensures that these models accurately reflect real-world events.

UQ can also inform emergency responses. For instance, weather simulations can predict the category of hurricanes, determine where they will hit, predict the amount of damage they will cause, and estimate how many people will be affected. UQ provides a degree of confidence needed to make critical decisions based on these simulations.

However, UQ has not yet been substantially applied to AI. In this article, we advocate for the necessity of developing UQ for medical AI. We know that UQ works in these other fields, and now we need to determine approaches and come up with principles for applying UQ to the AI field because physicians don’t currently trust the accuracy of models that can help diagnose patients. Modern AI can detect cancerous tissue from mammograms, brain scans, and other tests, as well as locate phenomena of interest in images and interpret clinical text, but certifying AI systems with UQ is a necessary step to avoid misdiagnoses and other potential errors.

Q: What areas of medicine stand to benefit the most from AI?

Begoli: There are dozens, if not hundreds, of medical areas where AI plays a significant role. It’s used for image-based diagnostics because deep learning methods excel at detecting anomalies in images. It’s also good at analyzing doctors’ notes and extracting relevant information from medical text and other clinical data by tracking patients over time to gain insights into cancer, Alzheimer’s, and other diseases. For example, we can use deep learning to track vital signs of hospital patients and detect when certain activity indicates the development of sepsis, a disease with a 50 percent mortality chance. These types of tools can help medical practitioners determine which patients to treat with antibiotics to prevent sepsis from developing.

Q: What is the current state of UQ in medical AI?

Begoli: It is in its infancy, but more and more research is emerging in the area, which could lead to advances in UQ for medical AI purposes. Ever since AI was first introduced, researchers have worked to develop decision support systems to help diagnose patients, but such tools have had a spotty adoption in practice because it’s difficult to guarantee that they won’t make mistakes. Just as physicians go through rigorous exams and years of training, UQ for AI would help prove the accuracy of AI systems that inform life-critical medical decisions.

Q: You write that UQ informs decisions related to risk management and nuclear stewardship. How far behind is medical AI?

Begoli: Very far behind. This state of affairs was one of our main motivations for writing this paper. It will not be possible to trust AI methods for broadly adopted clinical decision-making purposes without implementing UQ, which will require a concerted effort. We need to get physicians and mathematicians and computer scientists involved.

Q: What is the difference between a regular AI resource and one that incorporates UQ?

Begoli: AI is a black box because we don’t know exactly how algorithms are trained, but applying UQ would help in a couple ways. First, UQ would indicate how well the AI system is performing and how sensitive it is to certain datasets. Second, it might guide us to actually structure deep learning approaches to quantify errors, allowing an AI system to interpret its own architecture and track where things may go wrong. UQ would also provide a quality measure for AI that would be used as a metric for what is working and what is not, and we are now working on ways to implement that idea.

Q: How would enhanced UQ revolutionize healthcare?

Begoli: AI has tremendous potential, but there’s significant distrust surrounding the idea of applying AI to medicine. However, if trusted AI techniques can be implemented reliably on a global scale, it could help provide medical services to currently underserved populations.

For example, AI scanners can help diagnose vision loss resulting from diabetes and other diseases. These scanners take pictures to automatically detect the location and progression of degeneration in the eye by clearly showing where certain structures are starting to deteriorate through a process called macular degeneration. That helps save vision because these patients can then be prescribed injections or other effective, often inexpensive treatments.

And that’s just one example. Imagine having automated cancer detectors, where portable MRI scanners could diagnose cancer in individuals who live in remote areas without access to medical professionals such as radiologists and oncologists. Today, people live and die from cancer without even knowing they have it until it is too late.

AI automates processes and makes them more widely available, but it is not being used to its full potential in the medical field. We need UQ because having certified, trusted processes in place could lead to advances for important scenarios including early detection of diseases, better prenatal care, improved telemedicine, and reduction of medical errors and malpractice, to name a few.

Q: What is the most challenging aspect of applying UQ to medical AI?

Begoli: The absence of theory. Nuclear physics is a challenging field, but it is also one of the best understood areas because the mathematics behind it is well-understood. We have a mathematical formula that, at a theoretical level, can provide insights into how things look even before we see them for the first time. We have known what the general structure of the atom was before anyone had a chance to actually see it. Many fields have textbooks of theory that define how systems should behave, but that’s not true for AI. Instead, AI learns from data to make decisions, and there’s no exact theory that says how to make those decisions, which is a big challenge. It is difficult to build UQ on a foundation with so many unknown and data-sensitive components, so we have to pay very close attention to the limitations and dead ends.

Q: How can expertise at ORNL and DOE advance the development of UQ for medical AI?

Begoli: The first goal of the paper was to state why UQ is needed in AI, and the secondary goal was to implicitly state that the organizations such as DOE and its laboratories should play leading roles in this discipline because we have so much experience in UQ. DOE has expended significant time and effort to develop UQ for nuclear physics applications and has world-leading expertise in the field. ORNL also has substantial expertise in UQ as applied to uranium and nuclear reactor research, as well as its own focus on AI research through its AI initiative. Many large companies are working on AI, but not many of them are spending time on UQ, which provides an opportunity for DOE and ORNL to lead the way.

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: Elizabeth Rosenthal, Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire