‘Quantum Annealer’ Shows Promise in Study

August 22, 2019

August 22, 2019 — An international team of researchers, including Lawrence Livermore National Laboratory (LLNL) physicist Arjun Gambhir, has developed a new algorithm for solving polynomial systems of equations using a type of quantum computer called a “quantum annealer.” The team systematically examined how this method scales when facing increasingly difficult mathematical equations, with promising results.

It has been theorized that quantum computers would enable researchers to solve problems much faster than they could with classical computing, or even tackle problems too complex for today’s supercomputers, but that “quantum speedup” has not yet been realized. This study provides evidence that quantum annealing could one day deliver these gains. The research was published July 16 in Nature Scientific Reports.

LLNL physicst Arjun Gambhir helped develop an algorithm to solve equations on a quantum computer. Image courtesy of Julie Russell/LLNL.

“We found that problems that are really hard to solve with classical computing scale differently with quantum annealing,” said LLNL physicist Gambhir. “It was really interesting. When we made problems harder, the annealer didn’t have any more trouble, and in some cases the harder problems were actually easier to solve.”

To test how their algorithm would scale to problems of varying complexity, the team deployed the method on the commercially available D-Wave 2000Q quantum annealer. They started by running fairly simple problems and validated the output to make sure they were getting correct answers. The team then made the problems incrementally larger and more complex to systematically evaluate how the quantum annealer might compare to classical computing.

The team found that problems scale different with quantum annealing. While the approach scaled proportionally when it came to problem size, they got a surprising result when they increased the complexity of problems, expressed by the equation’s “condition number.” The quantum annealer was able to solve more complex problems just as easily as simple problems, and in some cases, the quantum annealer had an easier time with the complex problems.

“When I try to describe how a quantum annealer works, people often look at me like it runs on magic,” Gambhir said. “In a way it does; it runs on the magic of quantum physics. In some ways, it’s easier to understand by comparing it to metalworking than classical computer science.”

Quantum annealing works by leveraging a fundamental rule of physics: Physical systems tend to seek out their lowest-energy state. Metalworkers have been leveraging the process of annealing for hundreds of years to help make hardened tools and knives more ductile. They do so by carefully heating already-hardened metal, which excites the atomic structure in a controlled way, and then allowing it to cool so that the metal can recrystallize in a lower, less-brittle energy state. Quantum annealing is analogous to that process.

In classical computers, electricity is applied to transistors to switch their state to either a 1 or a 0. This single binary value — a 1 or a 0 — is called a bit. Instead of using transistors to process information, quantum annealers use tiny, niobium tubes supercooled to 0.7 degrees Kelvin (to put that into perspective, a warm room is around 300 degrees Kelvin and deep space is 3 degrees Kelvin). This environment changes the properties of the niobium tubes into superconductors, which allows them to relax to lower energy states with virtually zero resistance. These superconductors act as “qubits” and are the heart of how the quantum annealer solves problems.

To program the mathematical problem into the quantum annealer, researchers apply magnetic fields to the qubits to configure their initial state as a 1, a 0 or some superposition state of the qubit being both at once. They also “entangle” the qubits by specifying how each qubit should react to its neighbors. Energizing and entangling the qubits is similar to a metalworker heating up a knife for annealing. At this point, the researchers simply let the qubits naturally relax into their lowest energy state, just like the metalworker allows the knife to cool and recrystallize. It takes less than 200 microseconds for the qubits to find their end state, at which time the researchers can measure whether each qubit ended up as a 1 or a 0. If programmed properly, this end state is the answer to the problem.

“It’s crazy that I’m writing code for a quantum computer,” Gambhir said. “It’s so different than code development for other high-performance machines. That’s what’s so fascinating about this. If these quantum computers scale the way we think they might, it could help us leapfrog Moore’s Law for certain problems.”

Researchers from Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory and the RIKEN Computational Materials Science Research Team also participated in the study. The study was supported by the  Department of Energy Office of Science and by Oak Ridge National Laboratory and its Laboratory Directed Research and Development funds. The Oak Ridge Leadership Computing Facility is supported by the DOE Office of Science’s Advanced Scientific Computing Research program.


Source Lawrence Livermore National Laboratory (LLNL)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire