‘Quantum Annealer’ Shows Promise in Study

August 22, 2019

August 22, 2019 — An international team of researchers, including Lawrence Livermore National Laboratory (LLNL) physicist Arjun Gambhir, has developed a new algorithm for solving polynomial systems of equations using a type of quantum computer called a “quantum annealer.” The team systematically examined how this method scales when facing increasingly difficult mathematical equations, with promising results.

It has been theorized that quantum computers would enable researchers to solve problems much faster than they could with classical computing, or even tackle problems too complex for today’s supercomputers, but that “quantum speedup” has not yet been realized. This study provides evidence that quantum annealing could one day deliver these gains. The research was published July 16 in Nature Scientific Reports.

LLNL physicst Arjun Gambhir helped develop an algorithm to solve equations on a quantum computer. Image courtesy of Julie Russell/LLNL.

“We found that problems that are really hard to solve with classical computing scale differently with quantum annealing,” said LLNL physicist Gambhir. “It was really interesting. When we made problems harder, the annealer didn’t have any more trouble, and in some cases the harder problems were actually easier to solve.”

To test how their algorithm would scale to problems of varying complexity, the team deployed the method on the commercially available D-Wave 2000Q quantum annealer. They started by running fairly simple problems and validated the output to make sure they were getting correct answers. The team then made the problems incrementally larger and more complex to systematically evaluate how the quantum annealer might compare to classical computing.

The team found that problems scale different with quantum annealing. While the approach scaled proportionally when it came to problem size, they got a surprising result when they increased the complexity of problems, expressed by the equation’s “condition number.” The quantum annealer was able to solve more complex problems just as easily as simple problems, and in some cases, the quantum annealer had an easier time with the complex problems.

“When I try to describe how a quantum annealer works, people often look at me like it runs on magic,” Gambhir said. “In a way it does; it runs on the magic of quantum physics. In some ways, it’s easier to understand by comparing it to metalworking than classical computer science.”

Quantum annealing works by leveraging a fundamental rule of physics: Physical systems tend to seek out their lowest-energy state. Metalworkers have been leveraging the process of annealing for hundreds of years to help make hardened tools and knives more ductile. They do so by carefully heating already-hardened metal, which excites the atomic structure in a controlled way, and then allowing it to cool so that the metal can recrystallize in a lower, less-brittle energy state. Quantum annealing is analogous to that process.

In classical computers, electricity is applied to transistors to switch their state to either a 1 or a 0. This single binary value — a 1 or a 0 — is called a bit. Instead of using transistors to process information, quantum annealers use tiny, niobium tubes supercooled to 0.7 degrees Kelvin (to put that into perspective, a warm room is around 300 degrees Kelvin and deep space is 3 degrees Kelvin). This environment changes the properties of the niobium tubes into superconductors, which allows them to relax to lower energy states with virtually zero resistance. These superconductors act as “qubits” and are the heart of how the quantum annealer solves problems.

To program the mathematical problem into the quantum annealer, researchers apply magnetic fields to the qubits to configure their initial state as a 1, a 0 or some superposition state of the qubit being both at once. They also “entangle” the qubits by specifying how each qubit should react to its neighbors. Energizing and entangling the qubits is similar to a metalworker heating up a knife for annealing. At this point, the researchers simply let the qubits naturally relax into their lowest energy state, just like the metalworker allows the knife to cool and recrystallize. It takes less than 200 microseconds for the qubits to find their end state, at which time the researchers can measure whether each qubit ended up as a 1 or a 0. If programmed properly, this end state is the answer to the problem.

“It’s crazy that I’m writing code for a quantum computer,” Gambhir said. “It’s so different than code development for other high-performance machines. That’s what’s so fascinating about this. If these quantum computers scale the way we think they might, it could help us leapfrog Moore’s Law for certain problems.”

Researchers from Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory and the RIKEN Computational Materials Science Research Team also participated in the study. The study was supported by the  Department of Energy Office of Science and by Oak Ridge National Laboratory and its Laboratory Directed Research and Development funds. The Oak Ridge Leadership Computing Facility is supported by the DOE Office of Science’s Advanced Scientific Computing Research program.


Source Lawrence Livermore National Laboratory (LLNL)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire