Quantum Network Between Two National Labs Achieves Record Synch

June 27, 2022

LEMONT, Ill., June 27, 2022 — The world awaits quantum technology. Quantum computing is expected to solve complex problems that current, or classical, computing cannot. And quantum networking is essential for realizing the full potential of quantum computing, enabling breakthroughs in our understanding of nature, as well as applications that improve everyday life.

To test the synchronicity of two clocks — one at Argonne and one at Fermilab — scientists transmitted a traditional clock signal (blue) and a quantum signal (orange) simultaneously between the two clocks. The signals were sent over the Illinois Express Quantum Network. Researchers found that the two clocks remained synchronized within a time window smaller than 5 picoseconds, or 5 trillionths of a second. Credit: Lee Turman, Argonne

But making it a reality requires the development of precise quantum computers and reliable quantum networks that leverage current computer technologies and existing infrastructure.

Recently, as a sort of proof of potential and a first step toward functional quantum networks, a team of researchers with the Illinois‐Express Quantum Network (IEQNET) successfully deployed a long-distance quantum network between two U.S. Department of Energy (DOE) laboratories using local fiber optics.

The experiment marked the first time that quantum-encoded photons — the particle through which quantum information is delivered — and classical signals were simultaneously delivered across a metropolitan-scale distance with an unprecedented level of synchronization.

The IEQNET collaboration includes the DOE’s Fermi National Accelerator and Argonne National laboratories, Northwestern University and Caltech. Their success is derived, in part, from the fact that its members encompass the breadth of computing architectures, from classical and quantum to hybrid.

To have two national labs that are 50 kilometers apart, working on quantum networks with this shared range of technical capability and expertise, is not a trivial thing,” said Panagiotis Spentzouris, head of the Quantum Science Program at Fermilab and lead researcher on the project. ​You need a diverse team to attack this very difficult and complex problem.”

And for that team, synchronization proved the beast to tame. Together, they showed that it is possible for quantum and classical signals to coexist across the same network fiber and achieve synchronization, both in metropolitan-scale distances and real-world conditions.

Classical computing networks, the researchers point out, are complex enough. Introducing the challenge that is quantum networking into the mix changes the game considerably.

When classical computers need to execute synchronized operations and functions, like those required for security and computation acceleration, they rely on something called the Network Time Protocol (NTP). This protocol distributes a clock signal over the same network that carries information, with a precision that is a million times faster than a blink of an eye.

With quantum computing, the precision required is even greater. Imagine that the classical NTP is an Olympic runner; the clock for quantum computing is The Flash, the superfast superhero from comic books and films.

To assure that they get pairs of photons that are entangled — the ability to influence one another from a distance — the researchers must generate the quantum-encoded photons in great numbers.

Knowing which pairs are entangled is where the synchronicity comes in. The team used similar timing signals to synchronize the clocks at each destination, or node, across the Fermilab-Argonne network.

Precision electronics are used to adjust this timing signal based on known factors, like distance and speed — in this case, that photons always travel at the speed of light — as well as for interference generated by the environment, such as temperature changes or vibrations, in the fiber optics.

Because they had only two fiber strands between the two labs, the researchers had to send the clock on the same fiber that carried the entangled photons. The way to separate the clock from the quantum signal is to use different wavelengths, but that comes with its own challenge.

Choosing appropriate wavelengths for the quantum and classical synchronization signals is very important for minimizing interference that will affect the quantum information,” said Rajkumar Kettimuthu, an Argonne computer scientist and project team member. ​One analogy could be that the fiber is a road, and wavelengths are lanes. The photon is a cyclist, and the clock is a truck. If we are not careful, the truck can cross into the bike lane. So, we performed a large number of experiments to make sure the truck stayed in its lane.”

Ultimately, the two were properly assigned and controlled, and the timing signal and photons were distributed from sources at Fermilab. As the photons arrived at each location, measurements were performed and recorded using Argonne’s superconducting nanowire single photon detectors.

We showed record levels of synchronization using readily available technology that relies on radio frequency signals encoded onto light,” said Raju Valivarthi, a Caltech researcher and IEQNET team member. ​We built and tested the system at Caltech, and the IEQNET experiments demonstrate its readiness and capabilities in a real-world fiber optic network connecting two major national labs.”

The network was synchronized so accurately that it recorded only a 5-picosecond time difference in the clocks at each location; one picosecond is one trillionth of a second.

Such precision will allow scientists to accurately identify and manipulate entangled photon pairs for supporting quantum network operations over metropolitan distances in real-world conditions. Building on this accomplishment, the IEQNET team is getting ready to perform experiments to demonstrate entanglement swapping. This process enables entanglement between photons from different entangled pairs, thus creating longer quantum communication channels.

This is the first demonstration in real conditions to use real optical fiber to achieve this type of superior synchronization accuracy and the ability to coexist with quantum information,” Spentzouris said. ​This record performance is an essential step on the path to building practical multinode quantum networks.”

This project was funded through the DOE Office of Science, Advanced Scientific Computing Research program.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: John Spizzirri, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains — including and in particular the semiconductor supply chain. In th Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York St Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

HPC Career Notes: August 2022 Edition

August 5, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Shutterstock 1590905653

Expanded filesystems support in AWS ParallelCluster 3.2

Data is critical to HPC, and ensuring your simulations have the data they need — when they need it — is essential. However, data can originate from many sources and need to be consumed by diverse resources. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1731567844

Using Cloud-Based, GPU-Accelerated Systems for AML Fraud Detection

A major issue facing financial services organizations is tracking fraud due to money laundering. Trying to track money laundering is an expensive and time-consuming process due to the large volumes of financial data which must be analyzed. Read more…

Sniff Test: Supercomputer Research Investigates Odor Neutralizers

August 4, 2022

Factories, farms and landfills are functionally essential to our daily lives, but the less-than-desirable smells they often produce may be somewhat less necessary. Researchers from the University of New Orleans, the Louisiana Department of Environmental Quality, and the Jefferson Parish Department of Environmental Affairs in Jefferson, Louisiana... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

OpenCAPI to Be Folded into CXL

August 1, 2022

As the need for speed drives computational workloads, more standards organizations are coalescing around a standard called Compute Express Link – also known a Read more…

US CHIPS Act Close to Being Signed into Law

July 28, 2022

The U.S. House today passed the CHIPS and Science Act of 2022, which authorizes $280 billion in funding to boost semiconductor research and production in the country. The passage of the bill paves the way for U.S. president Joe Biden to sign the legislation into law, which would officially open up funding... Read more…

GE Research Enters the Exascale Era

July 28, 2022

The pitch for GE Research is easy, as Richard Arthur, senior director of computational methods research for GE Research, explained at the latest meeting of the DOE’s Advanced Scientific Computing Advisory Committee (ASCAC): a third of the electrons in the world that flow through devices are generated on GE equipment; every two seconds... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire