Quantum Researchers Strike the Right Chord with Silicides

January 24, 2023

Jan. 24, 2023 — Just as the sound of a guitar depends on its strings and the materials used for its body, the performance of a quantum computer depends on the composition of its building blocks. Arguably the most critical components are the devices that encode information in quantum computers.

The silicide research team. In the front from left to right: Mark Hersam, Michael Bedzyk, James Ronidnelli and Xiezeng Lu. Back: Carlos Torres and Dominic Goronzy. Credit: SQMS Center.

One such device is the transmon qubit — a patterned chip made of metallic niobium layers on top of a substrate, such as silicon. Between the two materials resides an ultrathin layer that contains both niobium and silicon. The compounds of this layer are known as silicides (NbxSiy). Their impact on the performance of transmon qubits has not been well understood — until now.

Silicides form when elemental niobium is deposited onto silicon during the fabrication process of a transmon qubit. They need to be well understood to make devices that reliably and efficiently store quantum information for as long as possible.

Researchers at the Superconducting Quantum Materials and Systems Center, hosted by the U.S. Department of Energy’s Fermi National Accelerator Laboratory, have discovered how silicides impact the performance of transmon qubits. Their research has been published in APS Physical Review Materials.

An Unexpected Signal

Carlos Torres-Castanedo was analyzing the materials of a transmon qubit using x-rays, when he came across a peculiar signal.

“I thought the signal came from a surface oxide, because that’s just what usually happens,” said Torres-Castanedo, a doctoral candidate in materials science at Northwestern University. “After spending a day trying to fit the data to match an oxide, the only possibility was to introduce a niobium silicide layer. When the data beautifully fit the model, I showed the results to my co-workers, and we all became excited about what this could mean for transmon qubit performance.”

The SQMS Center researchers dug deeper. They identified the types of silicides present, the thickness of the layer — typically only a few nanometers thick — and its physical and chemical structure. After completing these measurements, they focused on figuring out how these compounds affect the performance of qubits.

The researchers simulated different types of silicides. Not only did they find that silicides are detrimental to the performance of transmon qubits, but they also found that some are more detrimental than others.

Impact on Coherence Time

Qubits are the basic and fragile units of information that a quantum computer uses to perform calculations. They are physically encoded through transmon qubits.

Similar to a street performer plucking an A note on a guitar string and allowing the tone to ring out before it becomes obscured by street noise, quantum information in a transmon qubit exists for a limited time before it dissipates or is obscured by environmental noise. This time span is known as the coherence time. The longer the coherence time, the better the performance of the transmon qubit.

“This interface will never be like silicon stop, niobium start,” said SQMS Center researcher James Rondinelli, Walter Dill Scott Professor of Materials Science and Engineering at Northwestern University. “The first observation was that there is not an atomically sharp interface, but rather a compositional gradient between the silicon substrate —which is the platform for the system — and the niobium.”

With that observation, Rondinelli and his group began a detailed computational study as part of a greater SQMS Center effort to improve qubit coherence times.

Simulations with a Supercomputer

With a newfound curiosity about what the presence of silicides could mean for transmon qubits, the researchers used a supercomputer at the National Energy Research Scientific Computing Center, located at the DOE’s Lawrence Berkley National Laboratory.

Think of silicides as a thin material inside the street performer’s guitar that affects the sound of the guitar string. Researchers studying transmon qubits are essentially trying to isolate an A note and seeing to what extent the hidden material interferes.

Some silicides, for example, have magnetic properties that can interfere with the quantum information that rings out from the transmon qubit. The stronger the magnetism, the more the quantum information is obscured.

Through simulations, researchers found that the silicide compound Nb6Sidoes not have any magnetic properties, while Nb5Siintroduces magnetic noise. If silicides will always be present in transmon qubits, whether researchers like it or not, Nb6Siis less detrimental, and scientists will have to make do.

“I find it interesting how the research on the properties of these silicides have been studied since the ’80s, but never have been understood in a nanometer-sized film,” said Torres-Castanedo. “I feel proud that I was able to work alongside my fellow researchers to conduct this important study.”

These findings by themselves are significant. In the greater context of the SQMS Center’s aim to develop a state-of-the-art quantum computer, however, the results have much further implications than just understanding the properties of materials.

“The community who’s worked on superconducting qubits has traditionally been quantum physicists and engineers. The reason the SQMS Center has been so successful is they’ve embraced material scientists,” said Rondinelli. “To really push the field forward, you have to embrace a little bit of an outsider perspective to make an advancement, and we’re optimistic our multidisciplinary approach will solve this challenge.”

The Superconducting Quantum Materials and Systems Center at Fermilab is supported by the DOE Office of Science.


Source: Maxwell Bernstein, Fermilab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire