Quirky Quantum Materials Could Hold Fundamental Answers for Quantum Scientists

May 17, 2023

May 17, 2023 — Metals are a class of materials that are fairly well-understood—we’ve used them in technology for centuries, from arrowheads to smartphones—but “strange metals” are a certain kind of metal that scientists don’t know how to explain. While it’s more often seen in a lab than in our everyday lives, figuring it out could provide new answers about quantum mechanics, superconductivity…and, oddly, black holes.

“You’d think, in the year 2023, we would understand metals,” said Peter Abbamonte, a physics professor at the University of Illinois Urbana-Champaign (UIUC) and the director of its Center for Quantum Sensing and Quantum Materials, a Department of Energy Frontier Research Center. “It’s not like they’re a new phase of material. But we can’t even begin to explain strange metals, and that’s very frustrating to a physicist.”

Abbamonte and other researchers at the Quantum Sensing and Quantum Materials Center have been studying strange metals, using qubits and other quantum systems as sensors to measure density fluctuations in the quirky materials. These metals have potential applications as high-temperature superconductors, but Abbamonte said he is drawn by something else: his own voracious curiosity for something he doesn’t understand.

“These metals pose really, really fundamental questions,” he said. “How can a thing in which an electron has no identity carry a current? How can such a phase of matter exist?”

The “strange” property of strange metals seems rather innocuous. Resistivity describes the ability of a material to oppose the flow of current; most metals hit a maximum resistivity when you raise the temperature high enough, but the resistivity of strange metals as they’re heated blows past where this maximum should be. While this may seem rather trivial, it’s almost impossible to explain using current theories. This implies that there is something extremely abnormal about these strange metals on a quantum level.

Resistivity in metals is caused by electrons bouncing off of one another—the more they bounce around, the slower they carry electricity through the metal. The reason why normal metals have a maximum to their resistivity is because eventually, the electrons simply can’t bounce anymore—they are packed together like passengers on a subway train at rush hour.

Peter Abbamonte

So what are the electrons doing in a strange metal when its resistivity keeps increasing past that limit? One theory is that they collectively become part of a single quantum state—as if the crowded train passengers could move through each other, becoming indistinguishable—that allows them to dissipate energy at a faster rate.

The quantum abnormality seen in these metals can be found in one other physical system that similarly defies traditional theories: the event horizon of a black hole. This means that this topic has garnered the attention of string theorists and cosmologists as well, who typically do not work in the realm of materials.

“It’s a strange confluence of condensed matter physicists and string theorists,” Abbamonte said, adding that although these specialized fields of physics deal with extremely different systems, surprisingly, a small portion of the math is exactly the same.

He cited a meeting he attended in 2021 in the Netherlands where scientists from those two fields came together to discuss strange metals.

“It was fascinating because we basically spent two days just trying to understand what the other group was saying,” he said “What does this mean? What does that mean? It was like being thrown on a desert island with a bunch of people who speak a different language. It was extremely interesting.” Abbamonte hopes that the work being done at the Quantum Sensing and Quantum Materials Center may lend some insight into what happens with strange metals. Whatever it is, he said, this phenomenon can’t be explained by what we currently know, so the answer, when it’s found, will be completely new physics—for superconductors and black holes.

About QSQM

The Energy Frontier Research Center (EFRC) Quantum Sensing and Quantum Materials (QSQM) is highly-collaborative spanning three institutions, with additional team members and leadership from University of Illinois-Chicago and the SLAC National Accelerator Laboratory. On campus, the program draws together experts in quantum information science, physics and materials science from the lllinois Quantum Information Science and Technology Center (IQUIST), from the Physics Department, Materials Science and Engineering, and the Materials Research Laboratory.

The center aims to develop and apply nontrivial quantum sensing methods to measure and unravel mysteries associated with three families of quantum materials. These families are exotic superconductors, topological crystalline insulators, and strange metals. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Award number DE-SC0021238.


Source: Meredith Fore, CQE

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire