Research Could Bring New Devices That Control Heat Flow

January 27, 2014

WEST LAFAYETTE, Ind., Jan. 27 — Researchers are proposing a new technology that might control the flow of heat the way electronic devices control electrical current, an advance that could have applications in a diverse range of fields from electronics to textiles.

The concept uses tiny triangular structures to control “phonons,” quantum-mechanical phenomena that describe how vibrations travel through a material’s crystal structure.

Findings in research using advanced simulations show the triangular or T-shaped structures – if small enough in width – are capable of “thermal rectification,” or permitting a greater flow of heat in one direction than in the opposite direction, said Xiulin Ruan, an associate professor in Purdue University’s School of Mechanical Engineering and Birck Nanotechnology Center.

Rectification has made possible transistors, diodes and memory circuits central to the semiconductor industry. The new devices are thermal rectifiers that might perform the same function, but with phonons instead of electrical current.

“In most systems, heat flow is equal in both directions, so there are no thermal devices like electrical diodes. However, if we are able to control heat flow like we control electricity using diodes then we can enable a lot of new and exciting thermal devices including thermal switches, thermal transistors, logic gates and memory,” said Ruan, whose research group collaborated with a group led by Yong Chen, an associate professor in Purdue’s Department of Physics and School of Electrical and Computer Engineering. “People are just starting to understand how it works, and it is quite far from being used in applications.”

Findings are detailed in a research paper that has appeared online in the journal Nano Letters and will be published in an upcoming issue of the journal. The paper was authored by doctoral students Yan Wang, Ajit Vallabhaneni and Jiuning Hu and former doctoral student Bo Qiu; Chen; and Ruan.

The researchers used an advanced simulation method called molecular dynamics to demonstrate thermal rectification in structures called “asymmetric graphene nanoribbons.” Molecular dynamics simulations can simulate the vibrations of atoms and predict the heat flow in a material.

Graphene, an extremely thin layer of carbon, is promising for applications in electronics and computers. The triangular structure must be tiny in width to make possible the “lateral confinement” of phonons needed for the effect. Findings also show thermal rectification is not limited to graphene but could be seen in other materials in structures such as pyramidal, trapezoidal or T-shaped designs.

Hu, Ruan, and Chen also published a paper four years ago in the journal Nano Letters, among the first to propose asymmetric graphene nanoribbons as a thermal rectifier in research using the molecular dynamics simulations. Although numerous studies have been devoted to this topic since then, until now researchers did not know the mechanism behind thermal rectification. The new findings show that this mechanism works by restricting vibrations as they travel through the small lateral direction of an asymmetrical structure.

“We demonstrate that other asymmetric materials, such as asymmetric nanowires, thin films, and quantum dots of a single material can also be high-performance thermal rectifiers, as long as you have lateral confinement,” Ruan said. “This really broadens the potential of this rectification to a much wider spectrum of applications.”

Thermal rectification is not seen in larger triangular-shape structures because they lack lateral confinement. In order for lateral confinement to be produced, the cross section of the structure must be much smaller than the “mean free path” of a phonon, or only a few to hundreds of nanometers depending on the material, Wang said.

“This is the average distance a phonon can travel before it collides with another phonon,” he said.

However, although the devices must be tiny, they could be linked in series to produce larger structures and better rectification performance.

The concept could find uses in “thermal management” applications for computers and electronics, buildings and even clothing.

“For example, on a winter night you don’t want a building to lose heat quickly to the outside, while during the day you want the building to be warmed up by the sun, so it would be good to have building materials that permit the flow of heat in one direction, but not the other,” Ruan said.

A potential, although speculative, future application could be thermal transistors.  Unlike conventional transistors, thermal transistors would not require the use of silicon, are based on phonons rather than electrons and might make use of the large amount of waste heat that is already generated in most practical electronics, said Chen.

The research was funded by the U.S. Air Force Office of Scientific Research.

—–

Source: Purdue University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire