Research From Huth Lab at UT Austin Predicts How Neurons Respond to Language in Context

March 21, 2019

March 21, 2019 — Can artificial intelligence (AI) help us understand how the brain understands language? Can neuroscience help us understand why AI and neural networks are effective at predicting human perception?

Research from Alexander Huth and Shailee Jain from The University of Texas at Austin (UT Austin) suggests both are possible.

In a paper presented at the 2018 Conference on Neural Information Processing Systems (NeurIPS), the scholars described the results of experiments that used artificial neural networks to predict with greater accuracy than ever before how different areas in the brain respond to specific words.

“As words come into our heads, we form ideas of what someone is saying to us, and we want to understand how that comes to us inside the brain,” said Huth, assistant professor of Neuroscience and Computer Science at UT Austin. “It seems like there should be systems to it, but practically, that’s just not how language works. Like anything in biology, it’s very hard to reduce down to a simple set of equations.”

The work employed a type of recurrent neural network called long short-term memory (LSTM) that includes in its calculations the relationships of each word to what came before to better preserve context.

“If a word has multiple meanings, you infer the meaning of that word for that particular sentence depending on what was said earlier,” said Jain, a PhD student in Huth’s lab at UT Austin. “Our hypothesis is that this would lead to better predictions of brain activity because the brain cares about context.”

It sounds obvious, but for decades neuroscience experiments considered the response of the brain to individual words without a sense of their connection to chains of words or sentences. (Huth describes the importance of doing “real-world neuroscience” in a March 2019 paper in the Journal of Cognitive Neuroscience.)

In their work, the researchers ran experiments to test, and ultimately predict, how different areas in the brain would respond when listening to stories (specifically, the Moth Radio Hour). They used data collected from fMRI (functional magnetic resonance imaging) machines that capture changes in the blood oxygenation level in the brain based on how active groups of neurons are. This serves as a correspondent for where language concepts are “represented” in the brain.

Using powerful supercomputers at the Texas Advanced Computing Center (TACC), they trained a language model using the LSTM method so it could effectively predict what word would come next – a task akin to Google auto-complete searches, which the human mind is particularly adept at.

“In trying to predict the next word, this model has to implicitly learn all this other stuff about how language works,” said Huth, “like which words tend to follow other words, without ever actually accessing the brain or any data about the brain.”

Based on both the language model and fMRI data, they trained a system that could predict how the brain would respond when it hears each word in a new story for the first time.

Past efforts had shown that it is possible to localize language responses in the brain effectively. However, the new research showed that adding the contextual element – in this case up to 20 words that came before – improved brain activity predictions significantly. They found that their predictions improve even when the least amount of context was used. The more context provided, the better the accuracy of their predictions.

“Our analysis showed that if the LSTM incorporates more words, then it gets better at predicting the next word,” said Jain, “which means that it must be including information from all the words in the past.”

The research went further. It explored which parts of the brain were more sensitive to the amount of context included. They found, for instance, that concepts that seem to be localized to the auditory cortex were less dependent on context.

“If you hear the word dog, this area doesn’t care what the 10 words were before that, it’s just going to respond to the sound of the word dog”, Huth explained.

On the other hand, brain areas that deal with higher-level thinking were easier to pinpoint when more context was included. This supports theories of the mind and language comprehension.

“There was a really nice correspondence between the hierarchy of the artificial network and the hierarchy of the brain, which we found interesting,” Huth said.

Natural language processing — or NLP — has taken great strides in recent years. But when it comes to answering questions, having natural conversations, or analyzing the sentiments in written texts, NLP still has a long way to go. The researchers believe their LSTM-developed language model can help in these areas.

The LSTM (and neural networks in general) works by assigning values in high-dimensional space to individual components (here, words) so that each component can be defined by its thousands of disparate relationships to many other things.

The researchers trained the language model by feeding it tens of millions of words drawn from Reddit posts. Their system then made predictions for how thousands of voxels (three-dimensional pixels) in the brains of six subjects would respond to a second set of stories that neither the model nor the individuals had heard before. Because they were interested in the effects of context length and the effect of individual layers in the neural network, they essentially tested 60 different factors (20 lengths of context retention and three different layer dimensions) for each subject.

All of this leads to computational problems of enormous scale, requiring massive amounts of computing power, memory, storage, and data retrieval. TACC’s resources were well suited to the problem. The researchers used the Maverick supercomputer, which contains both GPUs and CPUs for the computing tasks, and Corral, a storage and data management resource, to preserve and distribute the data. By parallelizing the problem across many processors, they were able to run the computational experiment in weeks rather than years.

“To develop these models effectively, you need a lot of training data,” Huth said. “That means you have to pass through your entire dataset every time you want to update the weights. And that’s inherently very slow if you don’t use parallel resources like those at TACC.”

If it sounds complex, well — it is.

This is leading Huth and Jain to consider a more streamlined version of the system, where instead of developing a language prediction model and then applying it to the brain, they develop a model that directly predicts brain response. They call this an end-to-end system and it’s where Huth and Jain hope to go in their future research. Such a model would improve its performance directly on brain responses. A wrong prediction of brain activity would feedback into the model and spur improvements.

“If this works, then it’s possible that this network could learn to read text or intake language similarly to how our brains do,” Huth said. “Imagine Google Translate, but it understands what you’re saying, instead of just learning a set of rules.”

With such a system in place, Huth believes it is only a matter of time until a mind-reading system that can translate brain activity into language is feasible. In the meantime, they are gaining insights into both neuroscience and artificial intelligence from their experiments.

“The brain is a very effective computation machine and the aim of artificial intelligence is to build machines that are really good at all the tasks a brain can do,” Jain said. “But, we don’t understand a lot about the brain. So, we try to use artificial intelligence to first question how the brain works, and then, based on the insights we gain through this method of interrogation, and through theoretical neuroscience, we use those results to develop better artificial Intelligence.

“The idea is to understand cognitive systems, both biological and artificial, and to use them in tandem to understand and build better machines.”


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are already ensconced at the venue. In any case, you're busy, so he Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the GFS – its first new dynamical core in nearly 40 years – w Read more…

By Oliver Peckham

NCSU Researchers Overcome Key DNA-Based Data Storage Obstacles

June 12, 2019

In the race for increasingly dense data storage solutions, DNA-based storage is surely one of the most curious – and a team of North Carolina State University (NCSU) researchers just brought it two steps closer to bein Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Transforming Dark Data for Insights and Discoveries in Healthcare

Healthcare in the USA produces an enormous amount of patient-related data each year. It is likely that the average person will generate over one million gigabytes of health-related data across his or her lifetime, equivalent to 300 million books. Read more…

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

The Spaceborne Computer Returns to Earth, and HPE Eyes an AI-Protected Spaceborne 2

June 10, 2019

After 615 days on the International Space Station (ISS), HPE’s Spaceborne Computer has returned to Earth. The computer touched down onboard the same SpaceX Dr Read more…

By Oliver Peckham

Building the Team: South African Style

June 9, 2019

We’re only eight days away from the start of the ISC 2019 Student Cluster Competition. Fourteen student teams from eleven countries will travel to Frankfurt, Read more…

By Dan Olds

Scientists Solve Cosmic Mystery Through Black Hole Simulations

June 6, 2019

An international team of researchers has finally solved a long-standing cosmic mystery – and to do it, they needed to produce the most detailed black hole simulation ever created. Read more…

By Oliver Peckham

Quantum Upstart: IonQ Sets Sights on Challenging IBM, Rigetti, Others

June 5, 2019

Until now most of the buzz around quantum computing has been generated by folks already in the computer business – systems makers, chip makers, and big cloud Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This