Research Using TACC Supercomputers Helps to Develop New Anti-Cancer Strategies

April 18, 2019

April 18, 2019 — Cell membranes are the key regulating factor for biological processes at the tissue-scale. The application of an electric field can alter the cell membrane’s permeability to chemicals in their vicinity or even kill the subjected cells. The process, known as electropermeabilization or electroporation, consists of applying short, intense electric pulses.

Electroporation is currently used in the treatment of some cancers. For example, electro-chemotherapy is a cutting-edge cancer treatment technique that uses electroporation as a means to deliver chemotherapy into cancerous cells.

Spinning the camera about the vertical axis of the cell aggregate during electroporation. Colors depict different levels of conductance for cell membranes, with hotter colors being higher conductance values. The upper limit is S_max=2e5 S/m and the initial value is S_min=1.9S/m spanning 5 orders of magnitude in conductance range. Colors are used in a logarithmic scale (intensity is equal to log_10 [S]).
“Irreversible electroporation is used to destroy cancer cells,” said Frederic Gibou, a faculty member in the Department of Mechanical Engineering and Computer Science at the University of California, Santa Barbara (UCSB). “Electroporation is also used to deliver chemotherapy by enhancing cell permeability to non-permeant drugs. One of the important questions is which electric pulses will maximize the efficacy of treatments.”

Another interesting application is accelerating combat wound healing using electric pulsation.

“It’s an exciting, but mainly unexplored area that stems from a deeper discussion at the frontier of developmental biology, namely how electricity influences morphogenesis” — or the biological process that causes an organism to develop its shape — Gibou said. “In wound healing, the goal is to externally manipulate electric cues to guide cells to grow faster in the wounded region and accelerate the healing process.”

The common factor among these applications is their bioelectric physical nature. In recent years, it has been established that the bioelectric nature of living organisms plays a pivotal role in the development of their form and growth.

To understand bioelectric phenomena, Gibou’s group has considered computer experiments on multicellular spheroids in 3D. Spheroids are aggregates of a few tens of thousands of cells that are used in biology because of their structural and functional similarity with tumors.

A FIRST-EVER COMPUTATIONAL FRAMEWORK FOR BIOELECTRICAL INTERACTION AT THE TISSUE SCALE

In new research published in the Journal of Computational Physics, Gibou and his team delve into a new computational framework for parallel simulations that models the complex bioelectrical interaction at the tissue scale.

“We started from the phenomenological cell-scale model that was developed in the research group of our colleague, Clair Poignard, at the Université de Bordeaux, France, with whom we have collaborated for several years,” Gibou said.

“This model, which describes the evolution of transmembrane potential on an isolated cell, has been compared and validated with the response of a single cell in experiments,” he said. “From there, we developed the first computational framework that is able to consider a cell aggregate of tens of thousands of cells and to simulate their interactions. The end goal is to develop an effective tissue-scale theory for electroporation.”

According to Gibou and his colleague, Pouria Mistani, one of the main reasons for the absence of an effective theory at the tissue scale is the lack of data. Specifically, the missing data in the case of electroporation is the time evolution of the transmembrane potential of each individual cell in a tissue environment. Experiments are not able to make those measurements.

“Currently, experimental limitations prevent the development of an effective tissue-level electroporation theory,” Mistani said. “Our work has developed a computational approach that can simulate the response of individual cells in a spheroid to an electric field as well as their mutual interactions.”

Each cell behaves according to certain rules. “But when you consider a large number of them together, the aggregate exhibits novel coherent behaviors. It is this emergent phenomenon that is crucial for developing effective theories at the tissue-scale — novel behaviors that emerge from the coupling of many individual elements,” Mistani said.

The effects of electroporation used in cancer treatment, for example, depend on many factors, such as the strength of the electric field, its pulse, and its frequency. “This work could bring an effective theory that helps understand the tissue response to these parameters and thus optimize such treatments,” says Mistani.

The researchers are currently mining this unique dataset to develop an effective tissue-scale theory of cell aggregate electroporation.

“Before our work, the largest existing simulations of cell aggregate electroporation only considered about one hundred cells in 3D,” said Mistani, “or were limited to 2D simulations. Those simulations either ignored the real 3D nature of spheroids or considered too few cells for tissue-scale emergent behaviors to manifest.”

XSEDE CYBERINFRASTRUCTURE PLAYS KEY ROLE

Supercomputer allocations on Comet at the San Diego Supercomputer Center (SDSC) and Stampede2 at TACC were awarded to the researchers through XSEDE, the Extreme Science and Engineering Discovery Environment funded by the National Science Foundation (NSF). Additionally, the researchers used TACC’s long-term storage system, Ranch, also an XSEDE resource.

“XSEDE is a fantastic advanced computing ecosystem that really allows us to get data that would be impossible otherwise,” Gibou said.

“This has been, by far, the largest simulation of cell aggregate electroporation to date,” Mistani said. “It has successfully provided terabytes of high fidelity measurements of electroporation processes on tens of thousands of highly resolved cells in a 3D multicellular spheroid configuration.”

At the beginning of the project, Mistani used Comet to develop and test initial versions of the code. Then, he used Stampede2 to finalize and verify the code and to perform scaling tests. Finally, all the large scale simulations and measurements were performed on Stampede2.

“We also benefited from the suite of visualization tools provided by Stampede2,” Mistani said. “It’s as if you’re looking at cells in the human body — you can directly probe the data and gain insights about how to properly describe the system. The ability to make observations and interrogate the data helps conceive the underlying effective theory.”

With these large-scale simulations, transferring raw simulation results to local machines is very difficult. “A better strategy is to keep the data on supercomputers and reduce it via some post-processing before transferring to local machines for further analysis. Ranch is an excellent resource for storage of the simulation results,” Mistani continued.

Computer simulations are more and more prominent in the fields of science and engineering because they enable researchers to get data that sometimes cannot be obtained otherwise. State-of-the-art computer architectures, such as Comet and Stampede2, and advanced numerical methods open up new possibilities in advancing the frontiers of science in disciplines that are of high interest to the public, such as cancer treatment, combat wound healing, or the broad field of morphogenesis.

“For us, this research would not have been possible without XSEDE because such simulations require over 2,000 cores for 24 hours and terabytes of data to reach time scales and length scales where the collective interactions between cells manifest themselves as a pattern,” Gibou said. “It helped us observe a surprising structure for the behavior of the aggregate out of the inherent randomness. XSEDE provides a truly unique infrastructure for scientific discovery in the era of big data.” Moving forward, the team’s research goal is to develop an effective theory that describes the simulation results.

“This is an example where simulations are not merely used as a predictive tool, but help discover new phenomena,” Gibou said. “Under electroporation, cells respond in surprising synchronicity and it’s beautiful to witness how such levels of order emerge out of inherent randomness.”

The research of P. Mistani, A. Guittet, and F. Gibou was supported by NSF DMS-1620471 and ARO W911NF-16-1-0136. C. Poignard research is supported by Plan Cancer DYNAMO (ref. PC201515) and Plan Cancer NUMEP (ref. PC201615). P. Mistani would like to thank Daniil Bochkov in the CASL group for fruitful discussions that have contributed to this research. This work used XSEDE, which is supported by National Science Foundation grant number ACI-1053575. The authors acknowledge TACC at The University of Texas at Austin for providing HPC and visualization resources that have contributed to the research results reported within this paper. This research was performed in part within the scope of the Inria associate team NUM4SEP, between the CASL group at UCSB and the Inria team. MONC. C.P.’s research is partly performed within the scope of the European Associated Laboratory EBAM on electroporation, granted by CNRS.


Source: Faith Singer-Villalobos, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Leading Solution Providers

Contributors

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire