Researchers Accelerate Plasma Turbulence Simulations on Oak Ridge Supercomputers to Improve Fusion Design Models

January 3, 2020

Jan. 3, 2019  — In 1934, physicist Ernest Rutherford and his colleagues produced the first fusion reaction—the fusing of light nuclei to release energy—in a laboratory by converting deuterium, a heavy hydrogen isotope, to helium.

Since then, scientists have built increasingly efficient fusion energy devices with a goal to achieve net fusion energy, or useable power. Today, the world’s largest fusion experiment is being built by seven international members, including the United States. The ITER fusion facility is expected to produce 10 times more power than the thermal power required to heat the plasma, thereby demonstrating the feasibility of commercial-scale fusion power.

If fusion power plants become a reality, they could provide nearly inexhaustible energy using fuel derived from seawater—a globally abundant source of deuterium, and a similarly abundant source of lithium.

But fusion has some stellar challenges to overcome first. Hot, gaseous plasma formed in a fusion device reaches extreme temperatures higher than the core of the Sun, nature’s fusion factory. Electric currents running through the plasma rip apart hydrogen nuclei into their constituent ions and electrons.

The ITER divertor, illustrated in red, will sustain a high heat load as particles carrying the exhaust heat bombard its surface. Image courtesy of ITER Organization.

Because of these extreme and remote conditions, plasma behavior is difficult to study experimentally, and scientists often must fuse experiment with computational simulations to understand fusion processes.

That’s why a team of scientists—including Christopher Holland of the University of California San Diego, Jeff Candy of General Atomics, and Nathan Howard of MIT—are using the world’s smartest and fastest supercomputer, the 200-petaflop IBM AC922 Summit system at the Oak Ridge Leadership Computing Facility (OLCF), to better understand turbulence, an important characteristic of plasma behavior that affects performance in fusion devices such as ITER.

The OLCF is a US Department of Energy (DOE) Office of Science User Facility located at DOE’s Oak Ridge National Laboratory.

Following an Innovative and Novel Computational Impact on Theory and Experiment (INCITE) project led by Holland on the Cray XK7 Titan supercomputer—Summit’s 27-petaflop predecessor at the OLCF that was decommissioned in 2019—Candy is leading an Advanced Scientific Computing Research Leadership Computing Challenge project on Summit.

Turbulence in a tokamak

Many fusion devices use superconducting magnets to confine plasma in a tokamak, a donut-shaped vessel. The tokamak’s design allows magnetic field lines to run in two directions, long and short, through the plasma.

“As charged ions and electrons move around those field lines, they spin in a helix motion. The radius of this motion is known as the gyroradius,” Holland said.

The heavier ions throw their mass around more and create a larger gyroradius than that of the much lighter electrons. But as the ions and electrons spin along the magnetic field, they also push and pull on each other across the field, leading to fluctuations in ion and electron speed and energy. These energized wobbles result in turbulence that can rapidly transport heat away from the plasma center, reducing the number of fusion reactions that occur. Turbulence at one scale can inhibit or enhance turbulent fluctuations on other scales, impacting heat transport and, therefore, fusion performance.

“Standard plasma turbulence simulations only capture wavelengths at the ion scale, which is about 60 times bigger than the electron scale,” Howard said. “But we’ve found that simulating the larger scale alone is ineffective for explaining heat losses. We need both the long and short wavelengths in turbulence to explain levels of heat loss observed in experiment.”

To read the complete article, visit: https://www.olcf.ornl.gov/2020/01/02/speeding-toward-the-future-of-fusion/

Related Publication: J. Candy, I. Sfiligoi, E. A. Belli, K. Hallatschek, C. Holland, N. T. Howard, and E. D’Azevedo, “Multiscale-Optimized Plasma Turbulence Simulation on Petascale Architectures.” Computers and Fluids 188 (2019): 125, doi:10.1016/j.compfluid.2019.04.016.

About the Oak Ridge National Laboratory 

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

About the DIII-D National Fusion Facility

DIII-D is the largest magnetic fusion research facility in the U.S. and has been the site of numerous pioneering contributions to the development of fusion energy science. DIII-D continues the drive toward practical fusion energy with critical research conducted in collaboration with more than 600 scientists representing over 100 institutions worldwide. For more information, visit www.ga.com/diii-d.


Source: Katie Elyce Jones, Oak Ridge National Laboratory 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pressing needs and hurdles to widespread AI adoption. The sudde Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire