Researchers Develop New Parallel Computing Method

November 28, 2016

BERKELEY, Calif., Nov. 28 — Researchers from Julia Computing, UC Berkeley, Intel, the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, and JuliaLabs@MIT have developed a new parallel computing method to dramatically scale up the process of cataloging astronomical objects. This major improvement leverages 8,192 Intel Xeon processors in Berkeley Lab’s new Cori supercomputer and Julia, the high-performance, open-source scientific computing language to deliver a 225x increase in the speed of astronomical image analysis.

The code used for this analysis is called Celeste. It was developed at Berkeley Lab and uses statistical inference to mathematically locate and characterize light sources in the sky. When it was first released in 2015, Celeste was limited to single-node execution on at most hundreds of megabytes of astronomical images. In the case of the Sloan Digital Sky Survey (SDSS), which is the dataset used for this research, this analysis is conducted by identifying points of light in nearly 5 million images of approximately 12 megabytes each – a dataset of 55 terabytes.

Using the new parallel implementation, the research team dramatically increased the speed of its analysis by an estimated 225x. This enabled the processing of more than 20 thousand images, or 250 gigabytes – an increase of more than 3 orders of magnitude compared with previous iterations. The article is available here.

“Astronomical surveys are the primary source of data about the Universe beyond our solar system,” said Jeff Regier, a postdoctoral fellow in the UC Berkeley Department of Electrical Engineering and Computer Sciences who has been instrumental in the development of Celeste. “Through Bayesian statistics, Celeste combines what we already know about stars and galaxies from previous surveys and from physics theories, with what can be learned from new data. Its output is a highly accurate catalog of galaxies’ locations, shapes and colors. Such catalogs let astronomers test hypotheses about the origin of the Universe, as well as about the nature of dark matter and dark energy.”

“It is exactly to enable such cutting-edge machine-learning algorithms on massive data that we designed the Julia language,” said Viral Shah, CEO of Julia Computing. “Researchers can now focus on problem solving rather than programming.”

NERSC provided the extensive computing resources the team needed to apply such a complex algorithm to so much data, assisting with many aspects of designing a program to run at scale, including load balancing and interprocess communication, Regier noted.

“Practically all the significant code that runs on supercomputers is written in C/C++ and Fortran, for good reason: efficiency is critically important,” said Pradeep Dubey, Intel Fellow and Director of the Parallel Computing Lab at Intel. “With Celeste, we are closer to bringing Julia into the conversation because we’ve demonstrated excellent efficiency using hybrid parallelism – not just processes, but threads as well – something that’s still impossible to do with Python or R.”

Alan Edelman, co-creator of the Julia language and professor of applied mathematics at MIT, said, “The JuliaLabs group at MIT is thrilled and impressed with this advancement in the use of Julia for High Performance Computing. The dream of ‘ease of use’ and (‘and’ not ‘or!’) ‘high performance’ is becoming a reality.”

The Celeste project is at the cutting edge of scientific big data analysis along multiple fronts, added Prabhat, NERSC Data and Analytics Services Group Lead and principal investigator for the MANTISSA project. “From a scientific perspective, it is one of the first codes that can conduct inference across multiple imaging surveys and create a unified catalog with uncertainties,” he said. “From a methods perspective, it is the first demonstration of large scale variational inference applied to hundreds of gigabytes of scientific data. From a software perspective, I believe it is one of the largest applications of the Julia language to a significant problem: we have integrated the DTree scheduler and utilized MPI-3 one-sided communication primitives.”

This implementation of Celeste also demonstrated good weak and strong scaling properties on 256 nodes of the Cori Phase I system, Prabhat added. The group’s next step will be to apply Celeste to the entire SDSS imaging dataset, followed by a joint SDSS + DECaLS analysis on Cori Phase II.

About the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the US Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the US DOE Office of Science.

About Julia, Julia Computing and JuliaLabs@MIT

Julia is the high performance open source computing language that is taking astronomy, finance and other big data analytics fields by storm. Julia users and partners include: Intel, DARPA, Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center (NERSC), IBM, Federal Aviation Administration (FAA), MIT Lincoln Labs, Moore Foundation, Nobel Laureate Thomas J. Sargent, Federal Reserve Bank of New York (FRBNY), Brazilian National Development Bank (BNDES), BlackRock, Conning, Berkery Noyes, BestX and researchers at MIT, Harvard, UC Berkeley, Stanford and NYU. Julia Computing is the for-profit Julia consulting firm founded by the co-creators of the Julia computing language to help researchers and businesses maximize productivity and efficiency using Julia. JuliaLabs@MIT, led by Professor Alan Edelman, conducts research using the Julia language.


Source: Julia Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This