Researchers Develop New Parallel Computing Method

November 28, 2016

BERKELEY, Calif., Nov. 28 — Researchers from Julia Computing, UC Berkeley, Intel, the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, and JuliaLabs@MIT have developed a new parallel computing method to dramatically scale up the process of cataloging astronomical objects. This major improvement leverages 8,192 Intel Xeon processors in Berkeley Lab’s new Cori supercomputer and Julia, the high-performance, open-source scientific computing language to deliver a 225x increase in the speed of astronomical image analysis.

The code used for this analysis is called Celeste. It was developed at Berkeley Lab and uses statistical inference to mathematically locate and characterize light sources in the sky. When it was first released in 2015, Celeste was limited to single-node execution on at most hundreds of megabytes of astronomical images. In the case of the Sloan Digital Sky Survey (SDSS), which is the dataset used for this research, this analysis is conducted by identifying points of light in nearly 5 million images of approximately 12 megabytes each – a dataset of 55 terabytes.

Using the new parallel implementation, the research team dramatically increased the speed of its analysis by an estimated 225x. This enabled the processing of more than 20 thousand images, or 250 gigabytes – an increase of more than 3 orders of magnitude compared with previous iterations. The article is available here.

“Astronomical surveys are the primary source of data about the Universe beyond our solar system,” said Jeff Regier, a postdoctoral fellow in the UC Berkeley Department of Electrical Engineering and Computer Sciences who has been instrumental in the development of Celeste. “Through Bayesian statistics, Celeste combines what we already know about stars and galaxies from previous surveys and from physics theories, with what can be learned from new data. Its output is a highly accurate catalog of galaxies’ locations, shapes and colors. Such catalogs let astronomers test hypotheses about the origin of the Universe, as well as about the nature of dark matter and dark energy.”

“It is exactly to enable such cutting-edge machine-learning algorithms on massive data that we designed the Julia language,” said Viral Shah, CEO of Julia Computing. “Researchers can now focus on problem solving rather than programming.”

NERSC provided the extensive computing resources the team needed to apply such a complex algorithm to so much data, assisting with many aspects of designing a program to run at scale, including load balancing and interprocess communication, Regier noted.

“Practically all the significant code that runs on supercomputers is written in C/C++ and Fortran, for good reason: efficiency is critically important,” said Pradeep Dubey, Intel Fellow and Director of the Parallel Computing Lab at Intel. “With Celeste, we are closer to bringing Julia into the conversation because we’ve demonstrated excellent efficiency using hybrid parallelism – not just processes, but threads as well – something that’s still impossible to do with Python or R.”

Alan Edelman, co-creator of the Julia language and professor of applied mathematics at MIT, said, “The JuliaLabs group at MIT is thrilled and impressed with this advancement in the use of Julia for High Performance Computing. The dream of ‘ease of use’ and (‘and’ not ‘or!’) ‘high performance’ is becoming a reality.”

The Celeste project is at the cutting edge of scientific big data analysis along multiple fronts, added Prabhat, NERSC Data and Analytics Services Group Lead and principal investigator for the MANTISSA project. “From a scientific perspective, it is one of the first codes that can conduct inference across multiple imaging surveys and create a unified catalog with uncertainties,” he said. “From a methods perspective, it is the first demonstration of large scale variational inference applied to hundreds of gigabytes of scientific data. From a software perspective, I believe it is one of the largest applications of the Julia language to a significant problem: we have integrated the DTree scheduler and utilized MPI-3 one-sided communication primitives.”

This implementation of Celeste also demonstrated good weak and strong scaling properties on 256 nodes of the Cori Phase I system, Prabhat added. The group’s next step will be to apply Celeste to the entire SDSS imaging dataset, followed by a joint SDSS + DECaLS analysis on Cori Phase II.

About the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the US Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the US DOE Office of Science.

About Julia, Julia Computing and JuliaLabs@MIT

Julia is the high performance open source computing language that is taking astronomy, finance and other big data analytics fields by storm. Julia users and partners include: Intel, DARPA, Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center (NERSC), IBM, Federal Aviation Administration (FAA), MIT Lincoln Labs, Moore Foundation, Nobel Laureate Thomas J. Sargent, Federal Reserve Bank of New York (FRBNY), Brazilian National Development Bank (BNDES), BlackRock, Conning, Berkery Noyes, BestX and researchers at MIT, Harvard, UC Berkeley, Stanford and NYU. Julia Computing is the for-profit Julia consulting firm founded by the co-creators of the Julia computing language to help researchers and businesses maximize productivity and efficiency using Julia. JuliaLabs@MIT, led by Professor Alan Edelman, conducts research using the Julia language.


Source: Julia Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Dell EMC will Build OzStar – Swinburne’s New Supercomputer to Study Gravity

August 16, 2017

Dell EMC announced yesterday it is building a new supercomputer – the OzStar – for the Swinburne University of Technology (Australia) in support the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system into space aboard the SpaceX Dragon Spacecraft to explore if Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based system on the STREAM benchmark and on a test case running ANS Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capa Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This