Researchers Develop New Parallel Computing Method

November 28, 2016

BERKELEY, Calif., Nov. 28 — Researchers from Julia Computing, UC Berkeley, Intel, the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, and JuliaLabs@MIT have developed a new parallel computing method to dramatically scale up the process of cataloging astronomical objects. This major improvement leverages 8,192 Intel Xeon processors in Berkeley Lab’s new Cori supercomputer and Julia, the high-performance, open-source scientific computing language to deliver a 225x increase in the speed of astronomical image analysis.

The code used for this analysis is called Celeste. It was developed at Berkeley Lab and uses statistical inference to mathematically locate and characterize light sources in the sky. When it was first released in 2015, Celeste was limited to single-node execution on at most hundreds of megabytes of astronomical images. In the case of the Sloan Digital Sky Survey (SDSS), which is the dataset used for this research, this analysis is conducted by identifying points of light in nearly 5 million images of approximately 12 megabytes each – a dataset of 55 terabytes.

Using the new parallel implementation, the research team dramatically increased the speed of its analysis by an estimated 225x. This enabled the processing of more than 20 thousand images, or 250 gigabytes – an increase of more than 3 orders of magnitude compared with previous iterations. The article is available here.

“Astronomical surveys are the primary source of data about the Universe beyond our solar system,” said Jeff Regier, a postdoctoral fellow in the UC Berkeley Department of Electrical Engineering and Computer Sciences who has been instrumental in the development of Celeste. “Through Bayesian statistics, Celeste combines what we already know about stars and galaxies from previous surveys and from physics theories, with what can be learned from new data. Its output is a highly accurate catalog of galaxies’ locations, shapes and colors. Such catalogs let astronomers test hypotheses about the origin of the Universe, as well as about the nature of dark matter and dark energy.”

“It is exactly to enable such cutting-edge machine-learning algorithms on massive data that we designed the Julia language,” said Viral Shah, CEO of Julia Computing. “Researchers can now focus on problem solving rather than programming.”

NERSC provided the extensive computing resources the team needed to apply such a complex algorithm to so much data, assisting with many aspects of designing a program to run at scale, including load balancing and interprocess communication, Regier noted.

“Practically all the significant code that runs on supercomputers is written in C/C++ and Fortran, for good reason: efficiency is critically important,” said Pradeep Dubey, Intel Fellow and Director of the Parallel Computing Lab at Intel. “With Celeste, we are closer to bringing Julia into the conversation because we’ve demonstrated excellent efficiency using hybrid parallelism – not just processes, but threads as well – something that’s still impossible to do with Python or R.”

Alan Edelman, co-creator of the Julia language and professor of applied mathematics at MIT, said, “The JuliaLabs group at MIT is thrilled and impressed with this advancement in the use of Julia for High Performance Computing. The dream of ‘ease of use’ and (‘and’ not ‘or!’) ‘high performance’ is becoming a reality.”

The Celeste project is at the cutting edge of scientific big data analysis along multiple fronts, added Prabhat, NERSC Data and Analytics Services Group Lead and principal investigator for the MANTISSA project. “From a scientific perspective, it is one of the first codes that can conduct inference across multiple imaging surveys and create a unified catalog with uncertainties,” he said. “From a methods perspective, it is the first demonstration of large scale variational inference applied to hundreds of gigabytes of scientific data. From a software perspective, I believe it is one of the largest applications of the Julia language to a significant problem: we have integrated the DTree scheduler and utilized MPI-3 one-sided communication primitives.”

This implementation of Celeste also demonstrated good weak and strong scaling properties on 256 nodes of the Cori Phase I system, Prabhat added. The group’s next step will be to apply Celeste to the entire SDSS imaging dataset, followed by a joint SDSS + DECaLS analysis on Cori Phase II.

About the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the US Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the US DOE Office of Science.

About Julia, Julia Computing and JuliaLabs@MIT

Julia is the high performance open source computing language that is taking astronomy, finance and other big data analytics fields by storm. Julia users and partners include: Intel, DARPA, Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center (NERSC), IBM, Federal Aviation Administration (FAA), MIT Lincoln Labs, Moore Foundation, Nobel Laureate Thomas J. Sargent, Federal Reserve Bank of New York (FRBNY), Brazilian National Development Bank (BNDES), BlackRock, Conning, Berkery Noyes, BestX and researchers at MIT, Harvard, UC Berkeley, Stanford and NYU. Julia Computing is the for-profit Julia consulting firm founded by the co-creators of the Julia computing language to help researchers and businesses maximize productivity and efficiency using Julia. JuliaLabs@MIT, led by Professor Alan Edelman, conducts research using the Julia language.


Source: Julia Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This