Researchers Develop New Parallel Computing Method

November 28, 2016

BERKELEY, Calif., Nov. 28 — Researchers from Julia Computing, UC Berkeley, Intel, the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory, and JuliaLabs@MIT have developed a new parallel computing method to dramatically scale up the process of cataloging astronomical objects. This major improvement leverages 8,192 Intel Xeon processors in Berkeley Lab’s new Cori supercomputer and Julia, the high-performance, open-source scientific computing language to deliver a 225x increase in the speed of astronomical image analysis.

The code used for this analysis is called Celeste. It was developed at Berkeley Lab and uses statistical inference to mathematically locate and characterize light sources in the sky. When it was first released in 2015, Celeste was limited to single-node execution on at most hundreds of megabytes of astronomical images. In the case of the Sloan Digital Sky Survey (SDSS), which is the dataset used for this research, this analysis is conducted by identifying points of light in nearly 5 million images of approximately 12 megabytes each – a dataset of 55 terabytes.

Using the new parallel implementation, the research team dramatically increased the speed of its analysis by an estimated 225x. This enabled the processing of more than 20 thousand images, or 250 gigabytes – an increase of more than 3 orders of magnitude compared with previous iterations. The article is available here.

“Astronomical surveys are the primary source of data about the Universe beyond our solar system,” said Jeff Regier, a postdoctoral fellow in the UC Berkeley Department of Electrical Engineering and Computer Sciences who has been instrumental in the development of Celeste. “Through Bayesian statistics, Celeste combines what we already know about stars and galaxies from previous surveys and from physics theories, with what can be learned from new data. Its output is a highly accurate catalog of galaxies’ locations, shapes and colors. Such catalogs let astronomers test hypotheses about the origin of the Universe, as well as about the nature of dark matter and dark energy.”

“It is exactly to enable such cutting-edge machine-learning algorithms on massive data that we designed the Julia language,” said Viral Shah, CEO of Julia Computing. “Researchers can now focus on problem solving rather than programming.”

NERSC provided the extensive computing resources the team needed to apply such a complex algorithm to so much data, assisting with many aspects of designing a program to run at scale, including load balancing and interprocess communication, Regier noted.

“Practically all the significant code that runs on supercomputers is written in C/C++ and Fortran, for good reason: efficiency is critically important,” said Pradeep Dubey, Intel Fellow and Director of the Parallel Computing Lab at Intel. “With Celeste, we are closer to bringing Julia into the conversation because we’ve demonstrated excellent efficiency using hybrid parallelism – not just processes, but threads as well – something that’s still impossible to do with Python or R.”

Alan Edelman, co-creator of the Julia language and professor of applied mathematics at MIT, said, “The JuliaLabs group at MIT is thrilled and impressed with this advancement in the use of Julia for High Performance Computing. The dream of ‘ease of use’ and (‘and’ not ‘or!’) ‘high performance’ is becoming a reality.”

The Celeste project is at the cutting edge of scientific big data analysis along multiple fronts, added Prabhat, NERSC Data and Analytics Services Group Lead and principal investigator for the MANTISSA project. “From a scientific perspective, it is one of the first codes that can conduct inference across multiple imaging surveys and create a unified catalog with uncertainties,” he said. “From a methods perspective, it is the first demonstration of large scale variational inference applied to hundreds of gigabytes of scientific data. From a software perspective, I believe it is one of the largest applications of the Julia language to a significant problem: we have integrated the DTree scheduler and utilized MPI-3 one-sided communication primitives.”

This implementation of Celeste also demonstrated good weak and strong scaling properties on 256 nodes of the Cori Phase I system, Prabhat added. The group’s next step will be to apply Celeste to the entire SDSS imaging dataset, followed by a joint SDSS + DECaLS analysis on Cori Phase II.

About the National Energy Research Scientific Computing Center (NERSC) and Lawrence Berkeley National Laboratory

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the US Department of Energy’s Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 6,000 scientists at national laboratories and universities researching a wide range of problems in combustion, climate modeling, fusion energy, materials science, physics, chemistry, computational biology, and other disciplines. Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California for the US DOE Office of Science.

About Julia, Julia Computing and JuliaLabs@MIT

Julia is the high performance open source computing language that is taking astronomy, finance and other big data analytics fields by storm. Julia users and partners include: Intel, DARPA, Lawrence Berkeley National Laboratory, National Energy Research Scientific Computing Center (NERSC), IBM, Federal Aviation Administration (FAA), MIT Lincoln Labs, Moore Foundation, Nobel Laureate Thomas J. Sargent, Federal Reserve Bank of New York (FRBNY), Brazilian National Development Bank (BNDES), BlackRock, Conning, Berkery Noyes, BestX and researchers at MIT, Harvard, UC Berkeley, Stanford and NYU. Julia Computing is the for-profit Julia consulting firm founded by the co-creators of the Julia computing language to help researchers and businesses maximize productivity and efficiency using Julia. JuliaLabs@MIT, led by Professor Alan Edelman, conducts research using the Julia language.


Source: Julia Computing

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire