Researchers Develop System Combining Graph Neural Network Architecture with Resistive Memory 

March 16, 2023

March 16, 2023 — Graph neural networks (GNNs) are promising machine learning architectures designed to analyze data that can be represented as graphs. These architectures achieved very promising results on a variety of real-world applications, including drug discovery, social network design, and recommender systems.

Node classification of a citation network. a, An illustration of the large-scale citation network CORA. b, The node classification scheme. c, An illustration of simulated node embeddings. d, A node embedding mapped to a 2D spacing using t-SNE, showing clear clustering of nodes of the same categories. e, The accuracy of ten random tests for node classification and the software baseline.f, The normalized confusion matrices of the simulated classification results. g, A breakdown of the estimated OPs and the associated energy consumption. Credit: Nature Machine Intelligence (2023).

As graph-structured data can be highly complex, graph-based machine learning architectures should be designed carefully and effectively. In addition, these architectures should ideally be run on efficient hardware that support their computational demands without consuming too much power.

Researchers at University of Hong Kong, the Chinese Academy of Sciences, InnoHK Centers and other institutes worldwide recently developed a software-hardware system that combines a GNN architecture with a resistive memory, a memory solution that stores data in the form of a resistive state. Their paper, published in Nature Machine Intelligence, demonstrates the potential of new hardware solutions based on resistive memories for efficiently running graph machine learning techniques.

“The efficiency of digital computers is limited by the von-Neumann bottleneck and slowdown of Moore’s law,” Shaocong Wang, one of the researchers who carried out the study, told Tech Xplore. “The former is a result of the physically separated memory and processing units that incurs large energy and time overheads due to frequent and massive data shuttling between these units when running graph learning. The latter is because transistor scaling is approaching its physical limit in the era of 3nm technology node.”

 

Resistive memories are essentially tunable resistors, which are devices that resist the passage of electrical current. These resistor-based memory solutions have proved to be very promising for running artificial neural networks (ANNs). This is because individual resistive memory cells can both store data and perform computations, addressing the limitations of the so-called Naumann bottleneck.

“Resistive memories are also highly scalable, retaining Moore’s law,” Wang said. “But ordinary resistive memories are still not good enough for graph learning, because graph learning frequently changes the resistance of resistive memory, which leads to a large amount of energy consumption compared to the conventional digital computer using SRAM and DRAM. What’s more, the resistance change is inaccurate, which hinders precise gradient updating and weight writing. These shortcomings may defeat the advantages of resistive memory for efficient graph learning.”

The key objective of the recent work by Wang and his colleagues was to overcome the limitations of conventional resistive memory solutions. To do this, they designed a resistive memory-based graph learning accelerator that eliminates the need for resistive memory programming, while retaining a high efficiency.

They specifically used echo state networks, a reservoir computing architecture based on recurrent neural network with a sparsely connected hidden layer. Most of these networks’ parameters (i.e., weights) can be fixed random values. This means that they can allow resistive memory to be immediately applicable, without the need for programming.

“In our study, we experimentally verified this concept for graph learning, which is very important, and in fact, quite general,” Wang said. “Actually, images and sequential data, such as audios and texts, can also be represented as graphs. Even transformers, the most state-of-the-art and dominant deep learning models, can be represented as graph neural networks.”

The echo state graph neural networks developed by Wang and his colleagues are comprised of two distinct components, known as the echo state and readout layer. The weights of the echo state layer are fixed and random, thus they do need to be repeatedly trained or updated over time.

“The echo state layer functions as a graph convolutional layer that updates the hidden state of all nodes in the graph recursively,” Wang said. “Each node’s hidden state is updated based on its own feature and the hidden states of its neighboring nodes in the previous time step, both extracted with the echo state weights. This process is repeated four times, and the hidden states of all nodes are then summed into a vector to represent the entire graph, which is classified using the readout layer. This process is repeated for four times, and then the hidden states of all nodes are summed together into a vector, as the representation of the entire graph, which is the classified by the readout layer.”

The software-hardware design proposed by Wang and his colleagues has two notable advantages. Firstly, the echo state neural network it is based on requires significantly less training. Secondly, this neural network is efficiently implemented on a random and fixed resistive memory that does not need to be programmed.

“Our study’s most notable achievement is the integration of random resistive memory and echo state graph neural networks (ESGNN), which retain the energy-area efficiency boost of in-memory computing while also utilizing the intrinsic stochasticity of dielectric breakdown to provide low-cost and nanoscale hardware randomization of ESGNN,” Wang said. “Specifically, we propose a hardware-software co-optimization scheme for graph learning. Such a codesign may inspire other downstream computing applications of resistive memory.”

In terms of software, Wang and his colleagues introduced a ESGNN comprised of a large number of neurons with random and recurrent interconnections. This neural network employs iterative random projections to embed nodes and graph-based data. These projections generate trajectories at the edge of chaos, enabling efficient feature extraction while eliminating the arduous training associated with the development of conventional graph neural networks.

“On the hardware side, we leverage the intrinsic stochasticity of dielectric breakdown in resistive switching to physically implement the random projections in ESGNN,” Wang said. “By biasing all the resistive cells to the median of their breakdown voltages, some cells will experience dielectric breakdown if their breakdown voltages are lower than the applied voltage, forming random resistor arrays to represent the input and recursive matrix of the ESGNN. Compared with pseudo-random number generation using digital systems, the source of randomness here is the stochastic redox reactions and ion migrations that arise from the compositional inhomogeneity of resistive memory cells, offering low-cost and highly scalable random resistor arrays for in-memory computing.”

In initial evaluations, the system created by Wang and his colleagues achieved promising results, running ESGNNs more efficiently than both digital and conventional resistive memory solutions. In the future, it could be implemented to various real-world problems that require the analysis of data that can be represented as graphs.

Wang and his colleagues think that their software-hardware system could be applied to a wide range of machine learning problems, thus they now plan to continue exploring its potential. For instance, they wish to assess its performance in sequence analysis tasks, where their echo state network implemented on memristive arrays could remove the need for programming, while ensuring low power consumption and high accuracy.

“The prototype demonstrated in this work was tested on relatively small datasets, and we aim to push its limits with more complex tasks,” Wang added. “For instance, the ESN can serve as a universal graph encoder for feature extraction, augmented with memory to perform few-shot learning, making it useful for edge applications. We look forward to exploring these possibilities and expanding the capabilities of the ESN and memristive arrays in the future.”


Source: Ingrid Fadelli, Tech Xplore

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire