Researchers Devise New Algorithm to Solve Quantum Chemistry Problem

September 13, 2022

Sept. 13, 2022 — A team of researchers from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Stony Brook University have devised a new quantum algorithm to compute the lowest energies of molecules at specific configurations during chemical reactions, including when their chemical bonds are broken. As described in Physics Review Research, compared to similar existing algorithms, including the team’s previous method, the new algorithm will significantly improve scientists’ ability to accurately and reliably calculate the potential energy surface in reacting molecules.

In calculating the potential energy surface of the chemical reaction of H2 ;+ D2 → 2HD, the new algorithm (green diamonds) outperforms the previous algorithm (orange squares) in finding the most accurate solution (blue line).

For this work, Deyu Lu, a Center for Functional Nanomaterials (CFN) physicist at Brookhaven Lab, worked with Tzu-Chieh Wei, an associate professor specializing in quantum information science at the C.N. Yang Institute for Theoretical Physics at Stony Brook University, Qin Wu, a theorist at CFN, and Hongye Yu, a Ph.D. student at Stony Brook.

“Understanding the quantum mechanics of a molecule, how it behaves at an atomic level, can provide key insight into its chemical properties, like its stability and reactivity,” said Lu.

One particular property that has been a challenge to determine is a molecule’s ground state: the point where the molecule’s total electronic energy (including kinetic and potential energy) is at its lowest and nothing outside of that “molecular system” is exciting or charging the molecule’s electrons. When the atomic structure of a chemical system gets more complex, as in a large molecule, many more electrons can interact. Those interactions make calculating the ground state of complex molecules extremely difficult.

The new quantum algorithm improves on the previous algorithm to tackle this problem in a creative way. It exploits a smooth, geometric deformation made by continuously varying bond lengths or bond angles in the molecule’s structure. With this approach the scientists say they can calculate the ground state of molecules very accurately, even as chemical bonds are breaking and reforming during chemical reactions.

Building the Groundwork

“When solely relying on traditional computing methods, this ground state problem contains too many variables to solve—even on the most powerful supercomputers,” said Lu.

You can think of an algorithm as a set of steps to solve a particular problem. Classical computers can run complex algorithms, but as they get larger and more involved, they can become too difficult or time-consuming for classical computers to feasibly solve. Quantum computers can speed up the process by leveraging the rules of quantum mechanics.

In classical computing, data is stored in bits that have a value of 1 or 0. A quantum bit, known as a qubit, can have a value beyond just 0 or 1, it can even have a value of 0 and 1, in a so-called quantum superposition. In principle, these more “flexible” qubits can store a larger amount of information than classical bits. If scientists can find ways to harness the information-carrying capacity of qubits, computing power can expand exponentially with each additional qubit.

Qubits, however, are quite fragile. They can often break down when information is being extracted. When a quantum device interacts with the surrounding environment, it can generate noise or interference that destroys the quantum state. Temperature changes, vibrations, electromagnetic interference, and even material defects can also cause qubits to lose information.

To compensate for these pitfalls, scientists developed a hybrid solution that takes advantage of both classical computing algorithms, which are more stable and practical.

With seed grant funding from Stony Brook University, Lu and Wei began researching on hybrid classical and quantum computing approaches in 2019. This annual grant promotes collaboration between Brookhaven National Laboratory and Stony Brook University by funding joint research initiatives that align with the missions of both institutions. With this initial work, Lu and Wei first focused on solving the ground state problem by replacing the most “expensive” classical algorithms—the ones that were much more complex and required significantly more steps (and more computing time) to complete—with quantum ones.

Stretching Bonds, Creating New Paths

The researchers note that existing quantum algorithms all come with drawbacks for solving the ground state problem, including the one Wei and Yu developed in 2019. While some popular algorithms are accurate when a molecule is at its equilibrium geometry—its natural arrangement of atoms in three dimensions—those algorithms can become unreliable when the chemical bonds are broken at large atomic distances. Bond formation and dissociation play a role in many applications, such as predicting how much energy it takes to get a chemical reaction started, so scientists needed a way to tackle this problem as molecules react. They needed new quantum algorithms that can describe bond breaking.

For this new version of the algorithm, the team worked with the Brookhaven-Lab-led Co-design Center for Quantum Advantage (C2QA), which was formed in 2020. Wei contributes to the center’s software thrust, which specializes in quantum algorithms. The team’s new algorithm uses an adiabatic approach—one that makes gradual changes—but with some adaptations that ensure it remains reliable when chemical bonds are broken.

“An adiabatic process works by gradually adapting the conditions of a quantum mechanical system,” explained Lu. “In a way, you are reaching a solution in very small steps. You evolve the system from a simple, solvable model to the final target, typically a more difficult model. In addition to the ground state, however, a many-electronic system has many excited states at higher energies. Those excited states can pose a challenge when using this method to calculate the ground state.”

Wei compared an adiabatic algorithm to driving along a highway, “if you are traveling from one town to the next, there are several paths to get there, but you want to find the safest and most efficient one.”

At a particular O-H distance within an H2O molecule, there are multiple energy crossing points (a). This is the reason that the initial Adiabatic Algorithm fails. In contrast, the new algorithm, where the distance starts at a closer point and gradually moves further has energy levels smoothly connected without any crossing (b).

In the case of quantum chemistry, the key is to find a large enough “energy gap” between the ground state and excited states where no electron states exist. With a large enough gap, the vehicles in the highway metaphor won’t “cross lanes,” so their paths can be accurately traced.

“A large gap means that you can go faster, so, in a sense, you’re trying to find a less crowed highway to drive faster without hitting anything,” said Wei.

“With these algorithms, the entrance of the path is a well-defined, simple solution from classical computing,” Wei noted. “We also know where the exit is—the ground state of the molecule—and we were trying to find a way to connect it to the entrance in the most natural way, a straight line.

“We did that in our first paper, but the straight line had roadblocks caused by the energy gap closing and paths crossing. Now we have a better solution.”

When the scientists tested the algorithm, they demonstrated that even with finite bond length changes, the improved version still performed accurately for the ground state.

“We went beyond our comfort zone, because chemistry is not our focus,” said Wei. “But it was good to find an application like this and foster this kind of collaboration with CFN. It’s important to have different perspectives in research.”

He noted the accumulated effort of many people. “In the grand scheme, I think we’re making a small contribution, but this could be a foundation for other work in these fields,” he said. “This research is not only foundational, but a great illustration of how different institutions and facilities can come together to leverage their areas of expertise.”

The research on the quantum algorithmic development in this work was supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Co-design Center for Quantum Advantage (C2QA), while quantum chemistry applications used the theory and computation resources of the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory. Additional funding was provided by the National Science Foundation.

About Brookhaven National Laboratory

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Denise Yazak, BNL

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Microsoft Closes Confidential Computing Loop with AMD’s Milan Chip

September 22, 2022

Microsoft shared details on how it uses an AMD technology to secure artificial intelligence as it builds out a secure AI infrastructure in its Azure cloud service. Microsoft has a strong relationship with Nvidia, but is also working with AMD's Epyc chips (including the new 3D VCache series), MI Instinct accelerators, and also... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as the first computer programmer. The company also announced tw Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing that Hopper-generation GPUs (which promise greater energy eff Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

AWS Solution Channel

Shutterstock 1194728515

Simulating 44-Qubit quantum circuits using AWS ParallelCluster

Dr. Fabio Baruffa, Sr. HPC & QC Solutions Architect
Dr. Pavel Lougovski, Pr. QC Research Scientist
Tyson Jones, Doctoral researcher, University of Oxford

Introduction

Currently, an enormous effort is underway to develop quantum computing hardware capable of scaling to hundreds, thousands, and even millions of physical (non-error-corrected) qubits. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1166887495

Improving Insurance Fraud Detection using AI Running on Cloud-based GPU-Accelerated Systems

Insurance is a highly regulated industry that is evolving as the industry faces changing customer expectations, massive amounts of data, and increased regulations. A major issue facing the industry is tracking insurance fraud. Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia Introduces New Ada Lovelace GPU Architecture, OVX Systems, Omniverse Cloud

September 20, 2022

In his GTC keynote today, Nvidia CEO Jensen Huang launched another new Nvidia GPU architecture: Ada Lovelace, named for the legendary mathematician regarded as Read more…

Nvidia’s Hopper GPUs Enter ‘Full Production,’ DGXs Delayed Until Q1

September 20, 2022

Just about six months ago, Nvidia’s spring GTC event saw the announcement of its hotly anticipated Hopper GPU architecture. Now, the GPU giant is announcing t Read more…

NeMo LLM Service: Nvidia’s First Cloud Service Makes AI Less Vague

September 20, 2022

Nvidia is trying to uncomplicate AI with a cloud service that makes AI and its many forms of computing less vague and more conversational. The NeMo LLM service, which Nvidia called its first cloud service, adds a layer of intelligence and interactivity... Read more…

Nvidia Targets Computers for Robots in the Surgery Rooms

September 20, 2022

Nvidia is laying the groundwork for a future in which humans and robots will be collaborators in the surgery rooms at hospitals. The company announced a computer called IGX for Medical Devices, which will be populated in robots, image scanners and other computers and medical devices involved in patient care close to the point... Read more…

Survey Results: PsiQuantum, ORNL, and D-Wave Tackle Benchmarking, Networking, and More

September 19, 2022

The are many issues in quantum computing today – among the more pressing are benchmarking, networking and development of hybrid classical-quantum approaches. Read more…

HPC + AI Wall Street to Feature ‘Spooky’ Science for Financial Services

September 18, 2022

Albert Einstein famously described quantum mechanics as "spooky action at a distance" due to the non-intuitive nature of superposition and quantum entangled par Read more…

Analog Chips Find a New Lease of Life in Artificial Intelligence

September 17, 2022

The need for speed is a hot topic among participants at this week’s AI Hardware Summit – larger AI language models, faster chips and more bandwidth for AI machines to make accurate predictions. But some hardware startups are taking a throwback approach for AI computing to counter the more-is-better... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

Leading Solution Providers

Contributors

Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire