Researchers Eye Papermaking Improvements Through HPC

October 6, 2017

Oct. 6, 2017 — With the naked eye, a roll of paper towels doesn’t seem too complicated. But look closely enough, and you’ll see it’s made up of layers of fibers with thousands of intricate structures and contact points. These fluffy fibers are squeezed together before they are printed in patterns, and this resulting texture is key to the paper’s performance.

For a large paper product manufacturer like Procter and Gamble(link is external), which regularly uses high-performance computing to develop its products, simulating this behavior – the way in which those paper fibers contact each other– is complicated and expensive. The preprocessing stage of generating the necessary computational geometry and simulation mesh can be a major bottleneck in product design, wasting time, money and energy.

Lawrence Livermore National Lab researchers are developing a parallel program called p-fiber to help Procter and Gamble simulate the way in which paper fibers contact each other.

To help the company speed up the development process, Lawrence Livermore National Laboratory (LLNL) researcher Will Elmer and his team of programmers focused their efforts on developing a parallel program called p-fiber. Written in Python, the program prepares the fiber geometry and meshing input needed for simulating thousands of fibers, relying on a meshing tool called Cubit, created at Sandia National Laboratories, to generate the mesh for each individual fiber. The p-fiber code has been tested on parallel machines developed at Livermore for mission-critical applications. P-fiber prepares the input for ParaDyn, the parallel-computing version of DYNA3D, a code for modeling and predicting thermomechanical behavior.

The ensuing research, performed for an HPC4Manufacturing (HPC4Mfg) project with the papermaking giant, resulted in the largest multi-scale model of paper products to date, simulating thousands of fibers in ParaDyn with resolution down to the micron scale.

“The problem is larger than the industry is comfortable with, but we have machines with 300,000 cores, so it’s small in comparison to some of the things we run,” Elmer said. “We found that you can save on design cycle time. Instead of having to wait almost a day (19 hours), you can do the mesh generation step in five minutes. You can then run through many different designs quicker.”

Elmer said each individual paper fiber might consist of as many as 3,000 “bricks” or finite elements (components that calculate stress and strain), meaning millions of finite elements had to be accounted for. Elmer and his team generated up to 20 million finite elements, and modeled the most paper fibers in a simulation to date — 15,000. More importantly, they verified that the p-fiber code could scale up to a supercomputer, and, using Lab HPC systems Vulcan and Syrah, they found they could study the scaling behavior of the ParaDyn simulations up to 225 times faster than meshing the fibers one after another.

“Procter and Gamble hasn’t been able to get this kind of simulation, with this many fibers, to run on their system,” Elmer said. “We were able to show there’s a path to get to a representational size of a paper product. Questions like, ‘How much force do you need to tear it?’ can be answered on a supercomputer of the size we’re using. That was a valuable finding, so maybe years down the road, they could be doing these simulations for this kind of work in-house. That’s what HPC4Manufacturing is all about, showing these power players what can be possible in five years.”

Procter and Gamble began using the code on the Lab’s supercomputers in June, providing them with a way to use Paradyn remotely, and to determine if it would improve their design process. The company has the option to license p-fiber.

LLNL benefited from the collaboration as well by learning about how Paradyn scales with massive contact problems, Elmer said, and by creating benchmarks for helping to improve the code. The researchers located and fixed bugs in the code and doubled the speed of Paradyn on Vulcan, which could help with mission-critical applications.

“There’s still a lot of work to be done, but I’m happy with the way this worked,” Elmer said. “I think it’s gotten a lot of visibility and it’s a good example of working with a sophisticated user like Procter and Gamble. It filled out the portfolio of HPC4Manufacturing at that high level. It was a good way to get the Lab engaged in U.S. manufacturing competitiveness.”

Summer intern Avtaar Mahe (who researched gaps in the Paradyn code and scaled up the studies to run on Vulcan) and LLNL researcher Peggy Li (who worked on parallelization and programming) contributed to the effort.

The research was supported by the HPC4Manufacturing program, managed by the Department of Energy’s Advanced Manufacturing Office within the Energy Efficiency and Renewable Energy(link is external) Office. The program, led by LLNL, aims to unite the world-class computing resources and expertise of Department of Energy national laboratories with U.S. manufacturers to deliver solutions that could revolutionize manufacturing.

For more information, see HPC4Mfg.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire