Researchers Hone Cryptographic Algorithms to Stand Against Powerful Quantum Threat

October 19, 2022

October 19, 2022 — As the race to develop large-scale, reliable quantum computers gains speed, fortification efforts are ramping up to protect digital systems from a technology that could utterly obliterate their security. Commonwealth Cyber Initiative researchers at Virginia Tech and George Mason University are developing security protocols to fend off cyberattacks — both from today’s computers and from quantum computers coming down the pike.

CCI researcher Travis Morrison, assistant professor of mathematics, explores several different families of mathematical algorithms in post-quantum cryptography. Credit: Kelly Izlar, Virginia Tech.

In the interest of “prudence,” the U.S. National Institute of Standards and Technology (NIST) called upon the world’s cryptographers to craft and scrutinize encryption techniques that could resist attacks from powerful quantum computers. Six years later, in July 2022, NIST announced its first finalists, and Commonwealth Cyber Initiative researchers from Virginia Tech are among those who are working to make the selected algorithms more efficient and secure.

Prudent Protocols

Sensitive data like personal identifying information, online bank accounts, and medical records ­ as well as government and military communications are protected by cryptography — algorithms that safeguard data through encryption. Quantum computers can solve certain problems much faster than classical computers, thus sweeping aside the cryptosystems currently in place.

But what is the rationale for mounting a defense against a technology that’s still in development?

“First of all, we need to have techniques ready to prevent attacks before they become real-world problems. People are working on quantum computers as we speak, and they are making progress,” said Jason LeGrow, assistant professor of mathematics and Commonwealth Cyber Initiative fellow. “We need to be thinking about future-proofing our privacy. We don’t want the messages we send now to be compromised when someone has the means to decrypt them using more powerful technology than is available now.”

Authenticity, Integrity, and Encryption

Cryptography is the science of secret messages — but it’s not just about keeping information secret; it also verifies the authenticity of the person who sent the message and preserves message integrity so no one can tamper with it, said Travis Morrison, assistant professor in the Virginia Tech Department of Mathematics in the College of Science.

Different cryptographic protocols perform different jobs. The cryptographic algorithms selected by NIST are designed for two main cryptographic tasks: digital signatures, used for identity authentication and data integrity, and public-key encryption, which allows two parties to have a secure conversation without ever meeting each other.

“Take Amazon or Microsoft: Anybody or everybody wants to communicate with them, and they can’t do a new cryptosystem for each person,” said William Mahaney, a Commonwealth Cyber Initiative graduate researcher in math working with Morrison.

In public-key cryptography, a user has a public key and a private key. Sharing the public key doesn’t divulge the private key, but the two are mathematically linked. It is theoretically possible to tease out the private key from the public key.

(From left) Travis Morrison, William Mahaney, Nic Swanson, Gretchen Matthews, Jason LeGrow, and Chi Nguyen. Credit: Steven Mackay, Virginia Tech.

“One way to think about it is if you mix salt and sand — very easy to do, very difficult to undo. They are linked in the mixture,” said Gretchen Matthews, math professor and director of the Commonwealth Cyber Initiative. “Could you separate them? Yes, but it would take a long time.”

When it comes to the currently deployed cryptosystems, a “long time” is usually good enough.

“It’s not that this problem is impossible,” said Morrison. “We all factored in grade school. But if the key is long enough, then the amount of time it would take to factor is on the order of the age of the universe. This is what classical public-key cryptography bases its security on — that the problem is hard or takes a long time to solve.”

It’s also all about having the right tools for the job; a Bunsen burner makes separating salt from sand easy. With a quantum computer, most public-key cryptosystem problems become trivial.

The Threat and Wonder of Quantum Computation

“Quantum computers are dangerous to some cryptosystems because, in a matter of hours or days, they can solve the underlying math problems that would have taken more than a lifetime before,” said Mahaney, who is also the Julian Chin Ph.D. Fellow in Cybersecurity.

Classical computers deal in bits — 0s and 1s, this or that, yes or no, said Matthews.

“But when we consider quantum bits, a whole spectrum of possibilities opens up between 0 and 1,” said Matthews. Based on quantum mechanics, quantum computers behave in fundamentally different ways so that algorithms for certain types of computations are incredibly fast.

Post-Quantum Protection

“Post-quantum cryptographic systems are protocols that run on ordinary computer, but which we believe are secure even when an attacker has a quantum computer,” said LeGrow. You can run them on your cell phone, according to Morrison.

There are multiple subfields in mainstream post-quantum cryptography, said LeGrow, and experts in each subfield devise algorithms based on different mathematical frameworks. The families of algorithms have their respective strengths and weaknesses.

Code-based cryptography, which is in Matthews’ field of expertise, is the oldest scheme under consideration. These protocols are slower than some of the other systems, but researchers have had more time to scrutinize them for vulnerabilities.

Lattice-based systems, which Mahaney and Morrison are exploring, are faster but have large key sizes compared with current systems – not ideal for memory and bandwidth.

Isogeny-based schemes, which LeGrow and Morrison study, are at the other extreme, offering very small keys but running slower than other post-quantum schemes on average.

The NIST process aimed to define a suite of post-quantum cryptographic standards that use varied approaches for encryption and could serve as a toolbox of algorithms for different situations. The submissions were public so that the global cryptanalysis community could vet each one. Once an algorithm was submitted, “cryptanalysts would use every trick they could to break it,” said Mahaney. They swarmed and burrowed into every cranny of the system, sniffed out weakness in implementation or code, even in some cases how a computer or a network is set up – because if they didn’t find the cracks at this point, a hacker would later, when it could reveal private, proprietary, or classified information.

The NIST candidate pool was winnowed down until July, when NIST released the four initial candidates selected for standardization and announced a follow-up round for two remaining candidates — all from an original list of 82.

Among the schemes selected for standardization is a digital signature protocol known as FALCON. Morrison and Mahaney focus on algorithms to optimize the FALCON cryptosystems, which will be released as a full standard in the coming months. In collaboration with Krzysztof Gaj, a Commonwealth Cyber Initiative researcher from George Mason University, they are also looking at how susceptible these schemes are to side-channel attacks that take advantage of information leakage through timing, power consumption, and electromagnetic radiation.

Both candidates in the follow-up round are code-based algorithms, and Matthews and her team are developing families of codes with the goal of speeding up the algorithms without sacrificing security. Morrison’s and Matthews’ projects are both supported by the Commonwealth Cyber Initiative in Southwest Virginia.

As the NIST process comes to a close, an energized field of post-quantum cryptography continues to generate new techniques and algorithms for a wide array of security applications that will safeguard information today and in a quantum future.


Source: Kelly Izlar, Virginia Tech

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Supercomputing Centre, as he opened his keynote (“Energy E Read more…

Optical I/O Technology Needed for Zettascale, Say Top Chipmakers

March 16, 2023

Optical I/O is being singled out by top companies to push computing beyond exascale and into zettascale. The technology was singled out in a recent speech by AMD CEO Lisa Su as a critical technology to reach zettascale c Read more…

Tasty CHIPS – New MEC Program to Expand US Prototyping Capabilities Gains Steam

March 16, 2023

Sometime later this year, perhaps around July, the Department of Defense is expected to announce the sites and focus of up to nine hubs associated with the Microelectronics Commons (MEC) program. Funded and broadly descr Read more…

2023 Winter Classic: Mentor Interview, HPE

March 14, 2023

In our most recent update, “Triumph and Tragedy with HPL/HPCG”, we detailed how our dozen 2023 Winter Classic Invitational cluster competition teams dealt with their Linpack/HPCG module, mentored by HPE. In this episode of our incredibly popular 2023 Winter Classic Studio Update Show, we... Read more…

Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together

March 14, 2023

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D-Wave Systems and IBM, for example – the U.S. quantum lands Read more…

AWS Solution Channel

Shutterstock 1679096101

Building a 4x faster and more scalable algorithm using AWS Batch for Amazon Logistics

Amazon Logistics’ science team created an algorithm to improve the efficiency of their supply-chain by improving planning decisions. Initially the algorithm was implemented in a sequential way using a monolithic architecture executed on a single high performance computational node on AWS Cloud. Read more…

 

Get the latest on AI innovation at NVIDIA GTC

Join Microsoft at NVIDIA GTC, a free online global technology conference, March 20 – 23 to learn how organizations of any size can power AI innovation with purpose-built cloud infrastructure from Microsoft. Read more…

Pawsey Supercomputing Targets Detailed Regional Climate Projections

March 13, 2023

The Pawsey Supercomputing Centre in Australia is putting its shiny new Setonix supercomputer (ranked fourth on the most recent Top500 list) to work on an important climate change research project. The project, led by Jat Read more…

SCA23: Pawsey’s Mark Stickells on Sustainable Australian Supercomputing

March 17, 2023

“While the need for supercomputing is great, we have, in my view, reached a tipping point,” said Mark Stickells, executive director of Australia’s Pawsey Read more…

Optical I/O Technology Needed for Zettascale, Say Top Chipmakers

March 16, 2023

Optical I/O is being singled out by top companies to push computing beyond exascale and into zettascale. The technology was singled out in a recent speech by AM Read more…

Tasty CHIPS – New MEC Program to Expand US Prototyping Capabilities Gains Steam

March 16, 2023

Sometime later this year, perhaps around July, the Department of Defense is expected to announce the sites and focus of up to nine hubs associated with the Micr Read more…

Leibniz QIC’s Mission to Coax Qubits and Bits to Work Together

March 14, 2023

Four years after passing the U.S. National Quantum Initiative Act and decades after early quantum development and commercialization efforts started – think D- Read more…

Intel Hopes to Stop Server Beating from AMD Next Year

March 13, 2023

After getting bruised in servers by AMD, Intel hopes to stop the bleeding in the server market with next year's chip offerings. The difference-making products will be Sierra Forest and Granite Rapids, which are due out in 2024, said Dave Zinsner, chief financial officer at Intel, last week at the Morgan Stanley Technology, Media and Telecom conference. Read more…

White House Budget Request Includes Funding for Leadership-Class Computing Facility

March 10, 2023

The U.S. government is dedicating a record amount of $25 billion as part of the 2024 budget to emerging technologies as the country looks to counter the technology threat from China. The budget includes billions of dollars earmarked to boost the supercomputing infrastructure, semiconductors, and cutting-edge technologies such as artificial intelligence and quantum computing. The technology... Read more…

Inside NCSA’s Nightingale Cluster, Designed for Sensitive Data

March 10, 2023

The emergence of Covid in 2020 saw an explosion in HPC-powered health research. As the pandemic raged on, though, one limiting factor became increasingly clear: Read more…

Top HPC Players: It’s Time to Get Serious About Security

March 9, 2023

Time’s up: nearly everyone agrees it’s about time to become serious about bringing security safeguards to high-performance computing systems, which has been Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire