Researchers Train a Neural Network to Study Dark Matter

May 14, 2019

May 14, 2019 — As cosmologists and astrophysicists delve deeper into the darkest recesses of the universe, their need for increasingly powerful observational and computational tools has expanded exponentially. From facilities such as the Dark Energy Spectroscopic Instrument to supercomputers like Lawrence Berkeley National Laboratory’s Cori system at the National Energy Research Scientific Computing (NERSC) facility, they are on a quest to collect, simulate, and analyze increasing amounts of data that can help explain the nature of things we can’t see, as well as those we can.

Toward this end, gravitational lensing is one of the most promising tools scientists have to extract this information by giving them the ability to probe both the geometry of the universe and the growth of cosmic structure. Gravitational lensing distorts images of distant galaxies in a way that is determined by the amount of matter in the line of sight in a certain direction, and it provides a way of looking at a two-dimensional map of dark matter, according to Deborah Bard, Group Lead for the Data Science Engagement Group in Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC).

“Gravitational lensing is one of the best ways we have to study dark matter, which is important because it tells us a lot about the structure of the universe,” she said. “The majority of matter in the universe is dark matter, which we can’t see directly, so we have to use indirect methods to study how it is distributed.”

Weak lensing convergence maps for the ΛCDM cosmological model. Randomly selected maps from validation dataset (top) and GAN generated examples (bottom).

But as experimental and theoretical datasets grow, along with the simulations needed to image and analyze this data, a new challenge has emerged: these simulations are increasingly – even prohibitively – computationally expensive. So computational cosmologists often resort to computationally cheaper surrogate models, which emulate expensive simulations. More recently, however, “advances in deep generative models based on neural networks opened the possibility of constructing more robust and less hand-engineered surrogate models for many types of simulators, including those in cosmology,” said Mustafa Mustafa, a machine learning engineer at NERSC and lead author on a new study that describes one such approach developed by a collaboration involving Berkeley Lab, Google Research, and the University of KwaZulu-Natal.

A variety of deep generative models are being investigated for science applications, but the Berkeley Lab-led team is taking a unique tack: generative adversarial networks (GANs). In a paper published May 6, 2019 in Computational Astrophysics and Cosmology, they discuss their new deep learning network, dubbed CosmoGAN, and its ability to create high-fidelity, weak gravitational lensing convergence maps.

“A convergence map is effectively a 2D map of the gravitational lensing that we see in the sky along the line of sight,” said Bard, a co-author on the Computational Astrophysics and Cosmology paper. “If you have a peak in a convergence map that corresponds to a peak in a large amount of matter along the line of sight, that means there is a huge amount of dark matter in that direction.”

The Advantages of GANs

Why opt for GANs instead of other types of generative models? Performance and precision, according to Mustafa.

“From a deep learning perspective, there are other ways to learn how to generate convergence maps from images, but when we started this project GANs seemed to produce very high-resolution images compared to competing methods, while still being computationally and neural network size efficient,” he said.

“We were looking for two things: to be accurate and to be fast,” added co-author Zaria Lukic, a research scientist in the Computational Cosmology Center at Berkeley Lab. “GANs offer hope of being nearly as accurate compared to full physics simulations.”

The research team is particularly interested in constructing a surrogate model that would reduce the computational cost of running these simulations. In the Computational Astrophysics and Cosmology paper, they outline a number of advantages of GANs in the study of large physics simulations.

“GANs are known to be very unstable during training, especially when you reach the very end of the training and the images start to look nice – that’s when the updates to the network can be really chaotic,” Mustafa said. “But because we have the summary statistics that we use in cosmology, we were able to evaluate the GANs at every step of the training, which helped us determine the generator we thought was the best. This procedure is not usually used in training GANs.”

Using the CosmoGAN generator network, the team has been able to produce convergence maps that are described by – with high statistical confidence – the same summary statistics as the fully simulated maps. This very high level of agreement between convergence maps that are statistically indistinguishable from maps produced by physics-based generative models offers an important step toward building emulators out of deep neural networks.

“The huge advantage here was that the problem we were tackling was a physics problem that had associated metrics,” Bard said. “But with our approach, there are actual metrics that allow you to quantify how accurate your GAN is. To me that is what is really exciting about this – how these kinds of physics problems can influence machine learning methods.

Ultimately such approaches could transform science that currently relies on detailed physics simulations that require billions of compute hours and occupy petabytes of disk space – but there is considerable work still to be done. Cosmology data (and scientific data in general) can require very high-resolution measurements, such as full-sky telescope images.

“The 2D images considered for this project are valuable, but the actual physics simulations are 3D and can be time-varying ​and irregular, producing a rich, web-like structure of features,” said Wahid Bhmiji, a big data architect in the Data and Analytics Services group at NERSC and a co-author on the Computational Astrophysics and Cosmology paper. “In addition, the approach needs to be extended to explore new virtual universes rather than ones that have already been simulated – ultimately building a controllable CosmoGAN.”

“The idea of doing controllable GANs is essentially the Holy Grail of the whole problem that we are working on: to be able to truly emulate the physical simulators we need to build surrogate models based on controllable GANs,” Mustafa added. “Right now we are trying to understand how to stabilize the training dynamics, given all the advances in the field that have happened in the last couple of years. Stabilizing the training is extremely important to actually be able to do what we want to do next.”

About Computing Sciences at Berkeley Lab

The Computing Sciences Area at Lawrence Berkeley National Laboratory(Berkeley Lab) provides the computing and networking resources and expertise critical to advancing Department of Energy Office of Science (DOE-SC) research missions: developing new energy sources, improving energy efficiency, developing new materials, and increasing our understanding of ourselves, our world, and our universe. ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 7,000-plus scientists at national laboratories and universities. NERSC and ESnet are both Department of Energy Office of Science National User Facilities. The Computational Research Division (CRD) conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation.

Berkeley Lab addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE’s Office of Science. The DOE Office of Science is the United States’ single largest supporter of basic research in the physical sciences and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Kathy Kincade, Berkeley Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This