Researchers Uses Supercomputers to Visualize Stress

December 3, 2018

Dec. 3, 2018 — It’s easy to take a lot for granted. Scientists do this when they study stress, the force per unit area on an object. Scientists handle stress mathematically by assuming it to have symmetry. That means the components of stress are identical if you transform the stressed object with something like a turn or a flip. Supercomputer simulations show that at the atomic level, material stress doesn’t behave symmetrically. The findings could help scientists design new materials such as glass or metal that doesn’t ice up.

That’s according to a study published September of 2018 in the Proceedings of the Royal Society A. Study co-author Liming Xiong summarized the two main findings. “The commonly accepted symmetric property of a stress tensor in classical continuum mechanics is based on certain assumptions, and they will not be valid when a material is resolved at an atomistic resolution.” Xiong continued that “the widely used atomic Virial stress or Hardy stress formulae significantly underestimate the stress near a stress concentrator such as a dislocation core, a crack tip, or an interface, in a material under deformation.” Liming Xiong is an Assistant Professor in the Department of Aerospace Engineering at Iowa State University.

Xiong and colleagues treated stress in a different way than classical continuum mechanics, which assumes that a material is infinitely divisible such that the moment of momentum vanishes for the material point as its volume approaches zero. Instead, they used the definition by mathematician A.L. Cauchy of stress as the force per unit area acting on three rectangular planes. With that, they conducted molecular dynamics simulations to measure the atomic-scale stress tensor of materials with inhomogeneities caused by dislocations, phase boundaries and holes.

The computational challenges, said Xiong, swell up to the limits of what’s currently computable when one deals with atomic forces interacting inside a tiny fraction of the space of a raindrop. “The degree of freedom that needs to be calculated will be huge, because even a micron-sized sample will contain billions of atoms. Billions of atomic pairs will require a huge amount of computation resource,” said Xiong.

What’s more, added Xiong, is the lack of a well-established computer code that can be used for the local stress calculation at the atomic scale. His team used the open source LAMMPS Molecular Dynamics Simulator, incorporating the Lennard–Jones interatomic potential and modified through the parameters they worked out in the paper. “Basically, we’re trying to meet two challenges,” Xiong said. “One is to redefine stress at an atomic level. The other one is, if we have a well-defined stress quantity, can we use supercomputer resources to calculate it?”

Xiong was awarded supercomputer allocations on XSEDE, the Extreme Science and Engineering Discovery Environment, funded by the National Science Foundation. That gave Xiong access to the Comet system at the San Diego Supercomputer Center; and Jetstream, a cloud environment supported by Indiana University, the University of Arizona, and the Texas Advanced Computing Center.

“Jetstream is a very suitable platform to develop a computer code, debug it, and test it,” Xiong said. “Jetstream is designed for small-scale calculations, not for large-scale ones. Once the code was developed and benchmarked, we ported it to the petascale Comet system to perform large-scale simulations using hundreds to thousands of processors. This is how we used XSEDE resources to perform this research,” Xiong explained.

The Jetstream system is a configurable large-scale computing resource that leverages both on-demand and persistent virtual machine technology to support a much wider array of software environments and services than current NSF resources can accommodate.

“The debugging of that code needed cloud monitoring and on-demand intelligence resource allocation,” Xiong recalled. “We needed to test it first, because that code was not available. Jetstream has a unique feature of cloud monitoring and on-demand intelligence resource allocation. These are the most important features for us to choose Jetstream to develop the code.”

“What impressed our research group most about Jetstream,” Xiong continued, “was the cloud monitoring. During the debugging stage of the code, we really need to monitor how the code is performing during the calculation. If the code is not fully developed, if it’s not benchmarked yet, we don’t know which part is having a problem. The cloud monitoring can tell us how the code is performing while it runs. This is very unique,” said Xiong.

The simulation work, said Xiong, helps scientists bridge the gap between the micro and the macro scales of reality, in a methodology called multiscale modeling. “Multiscale is trying to bridge the atomistic continuum. In order to develop a methodology for multiscale modeling, we need to have consistent definitions for each quantity at each level… This is very important for the establishment of a self-consistent concurrent atomistic-continuum computational tool. With that tool, we can predict the material performance, the qualities and the behaviors from the bottom up. By just considering the material as a collection of atoms, we can predict its behaviors. Stress is just a stepping stone. With that, we have the quantities to bridge the continuum,” Xiong said.

Xiong and his research group are working on several projects to apply their understanding of stress to design new materials with novel properties. “One of them is de-icing from the surfaces of materials,” Xiong explained. “A common phenomenon you can observe is ice that forms on a car window in cold weather. If you want to remove it, you need to apply a force on the ice. The force and energy required to remove that ice is related to the stress tensor definition and the interfaces between ice and the car window. Basically, the stress definition, if it’s clear at a local scale, it will provide the main guidance to use in our daily life.”

Xiong sees great value in the computational side of science. “Supercomputing is a really powerful way to compute. Nowadays, people want to speed up the development of new materials. We want to fabricate and understand the material behavior before putting it into mass production. That will require a predictive simulation tool. That predictive simulation tool really considers materials as a collection of atoms. The degree of freedom associated with atoms will be huge. Even a micron-sized sample will contain billions of atoms. Only a supercomputer can help. This is very unique for supercomputing,” said Xiong.


Source: Jorge Salazar, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the General Chair of SC19 -- is an ACM Distinguished Scientist. Read more…

By HPCwire Editorial Team

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

AI and Enterprise Datacenters Boost HPC Server Revenues Past Expectations – Hyperion

April 9, 2019

Building on the big year of 2017 and spurred in part by the convergence of AI and HPC, global revenue for high performance servers jumped 15.6 percent last year Read more…

By Doug Black

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This