Researchers Using HLRS Supercomputing Resources to Take Quantum Dots for a Spin

March 4, 2021

March 4, 2021 — Modern computing technologies enable researchers across many scientific domains to simulate phenomena that are too large, small, dangerous, or difficult to observe through experiment. In fact, supercomputing initiated a new golden era of particle physics research, playing an indispensable role in helping illuminate interactions at the atomic level and below.

Since the 1920s, researchers have documented the laws that govern the atomic and subatomic world in painstaking detail. The quantum world, as it became known, operates according to a different set of laws than those first posited by Isaac Newton. As modern-day researchers have gained a deeper understanding of quantum mechanics, they have identified opportunities to manipulate and control subatomic particles in ways that could lead to new kinds of electronics or other technologies. Among these promising advances, quantum computing—which, through the application of quantum mechanics, processes information in a fundamentally different way than traditional computers—promises to accelerate certain kinds of research and the development of new applications.

While traditional computers rely on extensive patterns of 1s and 0s to transmit information in bits, quantum computers utilize so-called qubits, particles operating in accordance with the laws of quantum mechanics. Each qubit can be facing up, down, or in its “superposition,” meaning it simultaneously represents both positions. Although the existence of this kind of state—where electrons can represent multiple positions simultaneously—could benefit data-intensive modelling and simulation, further understanding is needed of these counterintuitive phenomena. Scientists must also develop methods for reliably manipulating and controlling quantum particles, specifically with regard to how individual electrons “spin,” or orient themselves under specific conditions.

In order to better understand how subatomic particles behave and interact at a fundamental level, a multidisciplinary research collaboration based at the TU Dortmund University is using high-performance computing (HPC) resources at the High-Performance Computing Center Stuttgart (HLRS) to simulate some of these complex interactions. The team is partnered with experimentalists in the international collaborative research center 160 (ICRC 160) established at St. Petersburg and Dortmund to study how electrons’ spins (and the spins of larger nuclei nearby in a given system) interact under certain conditions, and how laser technologies could help manipulate these systems.

In its most recent work, the team has focused on quantum dots. Developed within the context of semiconductor technologies, researchers found that quantum dots could control electrons’ spins under the right conditions, making them good candidates to serve as qubits in future quantum computers.

“A quantum dot can be seen as a trap for a single electron and therefore for its spin,” said Prof. Dr. Götz Uhrig, Professor at TU Dortmund and lead researcher on the project. “If we are looking at a solid state device, there are as many as 1020 electrons and their spins behave in such a way that no net effect can be seen for the outside; the spin of an excess electron, however, can be detected and manipulated.”

Turning toward a better understanding of spins in quantum dots

When physicists study atomic systems, one approach involves strategically adding or removing an electron to determine the properties that it imparts on the system. As they learned more about how to modify these systems, scientists and engineers came up with relatively inexpensive ways to create silicon-based semiconductors that today are nearly ubiquitous in consumer electronics.

Now, as scientists turn their attention to developing new electronics such as quantum computers, they have employed specialized semiconductor nanostructures—so-called quantum dots—in order to better direct electrons and their spins as is needed in order to follow certain algorithms.

Within a quantum dot, researchers can use lasers or other technologies fix the positions of excess electrons in space, making it easier to manipulate their spins. Experimentally, researchers must account for the strange, novel physics that govern quantum spins of electrons, in their “up” and “down” states, as mentioned previously.

Accounting for superpositions ultimately means that researchers must calculate millions of possible states of electron spins for each quantum dot. And while simulating the spin of an individual quantum dot interacting with roughly thousands of nuclear spins may not be too computationally demanding, a meaningful simulation or experiment will have to deal with thousands of quantum dots at once.

One common experimental approach is to use laser pulses to “train” quantum dots so that their spins act synchronously. “My colleagues send pulses to the system that orient a quantum dot’s spin,” Uhrig said. “When they do that for quite a long time, they get some response before the next pulse. So you see some polarization, then it dies out, but when you have done that for a long time, there is already a signal before the next pulse comes—that shows that the system has been trained successfully.”

In experiments, researchers will shoot a laser pulse every few nanoseconds and training the dots can take seconds or even minutes. This means that a realistic simulation must cover an extremely wide range of time scales. Performing the necessary calculations in a reasonable amount of time would not be possible without large-scale supercomputing resources.

This image shows the evolution of electronic spin polarization in time. Each pulse generates a finite signal which strongly oscillates since the spin precesses around the applied magnetic field. Due to the interaction with the disordered nuclear spins, the signal quickly dies out (upper panel). After long series of pulses, the nuclear spins are trained and a coherent revival of the signal occurs. Image credit: Philipp Schering, TU Dortmund

Advancement through iteration

Uhrig and his collaborators use HPC primarily to help understand the data seen in experiments quantitatively. This approach allows the team not only to efficiently verify how well a given quantum system has been trained, but also to make predictions using the physical model they develop. If the team has designed the model correctly, new phenomena shown in models should then also be found in experiment.

“This back-and-forth is a general feature in the dynamics between theory and experiment,” Uhrig said. “When theory tries to be close to experiment, many parameters need to be taken into account, meaning you have to do heavy numerics, and that’s where HPC comes in.”

Using this iterative approach, the team uncovered strategies for amplifying signals in the data that indicate how electron spins respond to laser pulses. Ultimately, this knowledge could improve researchers’ ability to predict and rely on quantum-scale behavior when executing tasks in quantum computers and other advanced electronics.

The team was able to access large core counts to run larger calculations on HLRS’s Hawk supercomputer during its acceptance phase last year. “On short notice, we were offered short queues for large core counts, and that made a big difference on how quickly we were able to do our research,” Uhrig said. Now that the team has been able to further optimize its code on Hawk, the researchers feel confident that its future allocations will enable them to take on more complex calculations for larger systems.


Source: Eric Gedenk, HLRS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation technology (WSE-2), which its says packs twice the performance Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

Supercomputer-Powered Climate Model Makes Startling Sea Level Rise Prediction

April 19, 2021

The climate science community is tasked with striking a difficult balance: inspiring precisely the amount of alarm commensurate to the climate crisis. Make estimates that are too conservative, and the public might not re Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the large research community it supports, it also sought to optimize Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

AWS Solution Channel

Research computing with RONIN on AWS

To allow more visibility into and management of Amazon Web Services (AWS) resources and expenses and minimize the cloud skills training required to operate these resources, AWS Partner RONIN created the RONIN research computing platform. Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impact on how large a piece of the DL pie a user can finally enj Read more…

Cerebras Doubles AI Performance with Second-Gen 7nm Wafer Scale Engine

April 20, 2021

Nearly two years since its massive 1.2 trillion transistor Wafer Scale Engine chip debuted at Hot Chips, Cerebras Systems is announcing its second-generation te Read more…

The New Scalability

April 20, 2021

HPC is all about scalability. The most powerful systems. The biggest data sets. The most cores, the most bytes, the most flops, the most bandwidth. HPC scales! Notwithstanding a few recurring arguments over the last twenty years about scaling up versus scaling out, the definition of scalability... Read more…

San Diego Supercomputer Center Opens ‘Expanse’ to Industry Users

April 15, 2021

When San Diego Supercomputer Center (SDSC) at the University of California San Diego was getting ready to deploy its flagship Expanse supercomputer for the larg Read more…

GTC21: Dell Building Cloud Native Supercomputers at U Cambridge and Durham

April 14, 2021

In conjunction with GTC21, Dell Technologies today announced new supercomputers at universities across DiRAC (Distributed Research utilizing Advanced Computing) in the UK with plans to explore use of Nvidia BlueField DPU technology. The University of Cambridge will expand... Read more…

The Role and Potential of CPUs in Deep Learning

April 14, 2021

Deep learning (DL) applications have unique architectural characteristics and efficiency requirements. Hence, the choice of computing system has a profound impa Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX developer kit. The Clara partnerships announced during... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU Technology Conference (GTC), held virtually once more due to the pandemic, the company unveiled its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. The announcement of the new... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire