Rethinking GPU Hackathons for a Pandemic and Beyond

January 13, 2021

Jan. 13, 2021 — When University of Michigan (UM) professor of aerospace engineering Venkat Raman and his team of graduate students were awarded a grant of compute time on the nation’s most powerful and smartest scientific supercomputer, the IBM AC922 Summit at the Oak Ridge Leadership Computing Facility (OLCF), they thought they had it made. Surely, Summit’s computational horsepower would vault their study of rotating detonation engines and their fluid dynamics simulation code into the stratosphere.

At first, however, the exact opposite happened when they didn’t take advantage of Summit’s biggest tool for accelerating codes: its 27,648 NVIDIA Volta GPUs. The team had no experience in optimizing code for GPU processors, so they didn’t put much effort into it. Consequently, their code actually ran slower than it had on traditional CPU computers.

“We did not think of GPUs as anything important: ‘We know how to write codes on CPUs and now people are telling us we need to use GPUs?’ So, the first day my students ran the code, we turned off all the GPUs because we thought it was a nuisance. We just ran it on the CPUs—and it was 10 times slower,” Raman said.

This caught the attention of the OLCF’s then–director of science, Jack Wells, who sent the team an email that essentially said, “Are you sure you guys are doing the right thing? You’re not using the GPUs.” The team, who had been awarded 130,000 node-hours on Summit through the US Department of Energy’s (DOE’s) Office of Advanced Scientific Computing Research’s Leadership Computing Challenge (ALCC) program, couldn’t afford for their codes to run slower.

The OLCF made the team aware of its series of hands-on seminars intended to help users optimize codes for GPUs: the OLCF GPU hackathons. The hackathons have evolved from a single, ambitious endeavor in 2014 to a series hosted at institutions across the country—and even around the world—to bolster programmers’ applications for scientific study on some of the largest GPU supercomputers. The OLCF and NVIDIA co-organize the trainings along with the local host institutions, and the OLCF also works with the Exascale Computing Project to codeliver a handful of OpenMP-specific GPU hackathons as well. Teams receive help from expert mentors at the 5-day events, aiming to leave with a piece of GPU code in hand.

“My students went to a hackathon in Oak Ridge and they sent me a message from there saying, ‘We had no idea what this machine can do—we have to rethink everything.’ So that’s what we did,” Raman said.

Raman’s trio of PhD candidates responsible for coding—Shivam Barwey, Ral Bielawski, and Supraj Prakash—had tried using the OpenACC programming model to offload a few elements of their simulation software (UM detonation FOAM, or UMdetFOAM, originally based on the code OpenFOAM, for “Open-source Field Operation and Manipulation”) to GPUs. But the results weren’t much better than their first foray. At the hackathon, where team members could talk to IBM and NVIDIA programmers directly, they found out why.

“While the OpenACC framework initially seemed very easy to use, we needed a lot more control over what data is transmitted, how that data is transmitted, and how we rewrite our algorithms in order to best use that framework,” Barwey said. “We need to rethink the way the algorithm is structured so we saturate the GPU to perform a large operation at a single time rather than constantly going back and forth between the CPU and GPU.”

Upon returning from the hackathon, the students began completely rewriting and modifying their solver—which involved replacing OpenFOAM and other external libraries with custom GPU libraries—to take full advantage of Summit’s GPUs. Now, more than 95 percent of the code runs on GPUs. Furthermore, the team recognized the opportunity to leverage the advantages GPUs have for artificial intelligence algorithms and consequently trained neural networks to speed up the modeling program even further—a first in the field. All of these improvements led to GPU performance reaching near-theoretical limits, restricted only by the communication bandwidth for transferring data between the CPU and GPU.

“This allows us to get—in some extreme cases—about 1,000-times-faster simulations compared to if we had just done conventional calculations,” Raman said. “More than even speedup, we can also answer different questions. It’s not an incremental change.”

As the team completed its ALCC project last summer with groundbreaking results—while also advancing the state of the art for computational fluid dynamics tools—the OLCF was reimagining the hackathon itself. Faced with a global pandemic, staff members were forced early on to decide whether collaborative programming seminars could transition successfully to the virtual domain. Could teams like Raman’s get as much out of long-distance interactions with mentors as they did in person? Could the OLCF risk a virtual format for the hackathons or should it forgo them altogether?

“There was a substantial discussion about whether this would be feasible and still provide value to the participants, and the organizers quickly decided that yes, it would be doable,” said Ashley Barker, section head of operations in the National Center for Computational Sciences (NCCS), which hosts the OLCF at the DOE’s Oak Ridge National Laboratory (ORNL).

In 2020, the OLCF—a DOE Office of Science User Facility—cohosted five of the virtual hackathons with NVIDIA, with a total of 296 people from 62 different institutions participating in the events. The success of the hackathons in the new format marks a milestone in the OLCF’s history and demonstrates the perseverance and tenacity of the high-performance computing (HPC) community to find creative solutions to problems—something required for code porting and development even under ideal circumstances. It also paves the way for opportunities to expand upon the hackathon’s original format and help users find new ways of collaborating at a time when it is needed most.

A new hackathon for new times

Attendees of the OLCF’s virtual hackathon in October. The OLCF cohosted five virtual hackathons with NVIDIA in 2020, with a total of 296 people from 62 different institutions participating. Image Credit: Jason Smith, ORNL.

The first-ever virtual NVIDIA GPU hackathon was hosted by the San Diego Supercomputer Center in May. Unlike typical hackathons, during which teams attend a 5-day-long consecutive event, the attending teams had one initial day of code profiling to determine which pieces of their codes were eating up their computational time. After that, they had a week’s break to implement changes and revise or adapt their strategies for porting to the GPUs in Ascent, an OLCF test bed system with an architecture similar to that of the OLCF’s Summit supercomputer. In the second week, participants had 3 full days to develop and port their codes during the virtual hackathon event.

The new format boasted many benefits right off the bat. The hackathon organizers found it easier to identify mentors due to the ability to participate virtually. Along with the greater availability of mentors, the organizers identified holding that separate introductory session was a best practice for future virtual hackathons because it better prepared participants for the 3-day event.

The success of the first event marked the new format for the remainder of the 2020 hackathon series. The virtual format wasn’t without its challenges, of course. Time zone differences and virtual meeting fatigue were some of the biggest inconveniences. However, most participants observed efficiency gains and were able to find the same value they received at the in-person events.

“People don’t have to travel, and I think they’re still able to do what they were doing before and get it done in a similar amount of time,” said Tom Papatheodore, HPC engineer in the Operations Section at NCCS.

First-timers reap big benefits

One team that saw success this year was the MOVE–computational fluid dynamics (CFD), or MOVE-CFD, team from Rensselaer Polytechnic Institute. The team works with the parallel, hierarchic, adaptive, stabilized transient analysis (PHASTA) code, which can be used for variety practical cases of interest that can involve complicated geometries—such as detailed aerospace configurations or human arterial system—as well as complex physics, such as fluid turbulence or multiphase interactions. PHASTA allows researchers to achieve high accuracy for modeling turbulent flows in these systems. The team took a mini-version of PHASTA to the OLCF-hosted GPU hackathon on October 19 and October 26–28 and, with help from NVIDIA mentors at the hackathon, ported the mini-application to the OLCF’s Ascent test bed system and achieved a 10-fold speedup.

Another team, led by aerospace researcher Ioannis Nompelis at the University of Minnesota (UMN), brought a mini-application that was purposely built to mimic the US3D CFD solver, which is used for simulating hypersonic flows around geometrically complex shapes. The team, AeroUMN, observed a 40-fold speedup of the mini-application—which is named MY3D—from a single compute unit (CPU core) when using the entire CPU resource of an Ascent-type node. And when the team employed one of the six GPU accelerators found on the compute node, MY3D performed 50 percent better than the original CPU-only version.

For the future, not virtual but virtual-inspired

Papatheodore said the organizers intend for the 2021 GPU hackathons to continue in the virtual format.

“I think we have proven this year that we can run these events virtually and see similar results to the in-person events,” Papatheodore said.

Papatheodore emphasized that the hackathons likely won’t remain virtual forever. But the organizers plan to keep some form of the hackathons virtual even after a return to in-person events. This will allow participants to reap the benefits of the new format, such as increased availability of mentors.

“In the future, we’ll likely incorporate some of the most successful aspects of the virtual hackathons into our in-person events as well, so we have forever changed the format of these hackathons,” Papatheodore said.

UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Click here for the full post.


Source: Coury Turczyn and Rachel McDowell, OLCF

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support contracts directly from Nvidia for the certified systems ar Read more…

By John Russell

XSEDE Supercomputers Square Off Against Ebola

January 26, 2021

COVID-19 may have dominated headlines and occupied much of the world’s scientific computing capacity over the last year, but many researchers continued their work to keep other deadly viruses at bay. One of those, Ebol Read more…

By Oliver Peckham

What’s New in HPC Research: Galaxies, Fugaku, Electron Microscopes & More

January 25, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has unveiled alternatives for affected users that give them severa Read more…

By Todd R. Weiss

China Unveils First 7nm Chip: Big Island

January 22, 2021

Shanghai Tianshu Zhaoxin Semiconductor Co. is claiming China’s first 7-nanometer chip, described as a leading-edge, general-purpose cloud computing chip based on a proprietary GPU architecture. Dubbed “Big Island Read more…

By George Leopold

AWS Solution Channel

Fire Dynamics Simulation CFD workflow on AWS

Modeling fires is key for many industries, from the design of new buildings, defining evacuation procedures for trains, planes and ships, and even the spread of wildfires. Read more…

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practical application, and what are some of the key opportunities a Read more…

By John Russell

Nvidia Rolls Out Certified Server Program Targeting AI Applications

January 26, 2021

Nvidia today launched a certified systems program in which participating vendors can offer Nvidia-certified servers with up to eight A100 GPUs. Separate support Read more…

By John Russell

Red Hat’s Disruption of CentOS Unleashes Storm of Dissent

January 22, 2021

Five weeks after angering much of the CentOS Linux developer community by unveiling controversial changes to the no-cost CentOS operating system, Red Hat has un Read more…

By Todd R. Weiss

HiPEAC Keynote: In-Memory Computing Steps Closer to Practical Reality

January 21, 2021

Pursuit of in-memory computing has long been an active area with recent progress showing promise. Just how in-memory computing works, how close it is to practic Read more…

By John Russell

HiPEAC’s Vision for a New Cyber Era, a ‘Continuum of Computing’

January 21, 2021

Earlier this week (Jan. 19), HiPEAC — the European Network on High Performance and Embedded Architecture and Compilation — published the 8th edition of the HiPEAC Vision, detailing an increasingly interconnected computing landscape where complex tasks are carried out across multiple... Read more…

By Tiffany Trader

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

By Oliver Peckham

President-elect Biden Taps Eric Lander and Deep Team on Science Policy

January 19, 2021

Last Friday U.S. President-elect Joe Biden named The Broad Institute founding director and president Eric Lander as his science advisor and as director of the Office of Science and Technology Policy. Lander, 63, is a mathematician by training and distinguished life sciences... Read more…

By John Russell

Pat Gelsinger Returns to Intel as CEO

January 14, 2021

The Intel board of directors has appointed a new CEO. Intel alum Pat Gelsinger is leaving his post as CEO of VMware to rejoin the company that he parted ways with 11 years ago. Gelsinger will succeed Bob Swan, who will remain CEO until Feb. 15. Gelsinger previously spent 30 years... Read more…

By Tiffany Trader

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

By John Russell

Esperanto Unveils ML Chip with Nearly 1,100 RISC-V Cores

December 8, 2020

At the RISC-V Summit today, Art Swift, CEO of Esperanto Technologies, announced a new, RISC-V based chip aimed at machine learning and containing nearly 1,100 low-power cores based on the open-source RISC-V architecture. Esperanto Technologies, headquartered in... Read more…

By Oliver Peckham

Azure Scaled to Record 86,400 Cores for Molecular Dynamics

November 20, 2020

A new record for HPC scaling on the public cloud has been achieved on Microsoft Azure. Led by Dr. Jer-Ming Chia, the cloud provider partnered with the Beckman I Read more…

By Oliver Peckham

NICS Unleashes ‘Kraken’ Supercomputer

April 4, 2008

A Cray XT4 supercomputer, dubbed Kraken, is scheduled to come online in mid-summer at the National Institute for Computational Sciences (NICS). The soon-to-be petascale system, and the resulting NICS organization, are the result of an NSF Track II award of $65 million to the University of Tennessee and its partners to provide next-generation supercomputing for the nation's science community. Read more…

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

By Tracey Bryant

Leading Solution Providers

Contributors

Top500: Fugaku Keeps Crown, Nvidia’s Selene Climbs to #5

November 16, 2020

With the publication of the 56th Top500 list today from SC20's virtual proceedings, Japan's Fugaku supercomputer – now fully deployed – notches another win, Read more…

By Tiffany Trader

Texas A&M Announces Flagship ‘Grace’ Supercomputer

November 9, 2020

Texas A&M University has announced its next flagship system: Grace. The new supercomputer, named for legendary programming pioneer Grace Hopper, is replacing the Ada system (itself named for mathematician Ada Lovelace) as the primary workhorse for Texas A&M’s High Performance Research Computing (HPRC). Read more…

By Oliver Peckham

At Oak Ridge, ‘End of Life’ Sometimes Isn’t

October 31, 2020

Sometimes, the old dog actually does go live on a farm. HPC systems are often cursed with short lifespans, as they are continually supplanted by the latest and Read more…

By Oliver Peckham

Gordon Bell Special Prize Goes to Massive SARS-CoV-2 Simulations

November 19, 2020

2020 has proven a harrowing year – but it has produced remarkable heroes. To that end, this year, the Association for Computing Machinery (ACM) introduced the Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Intel Xe-HP GPU Deployed for Aurora Exascale Development

November 17, 2020

At SC20, Intel announced that it is making its Xe-HP high performance discrete GPUs available to early access developers. Notably, the new chips have been deplo Read more…

By Tiffany Trader

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chipmaker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the European Union begin scrutinizing the impact of the blockbuster deal on semiconductor industry competition and innovation, the deal has at the very least... Read more…

By George Leopold

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This