SLIDE: Rice Researchers Create Algorithm That Trains Deep Neural Nets Faster on CPUs than GPUs

March 3, 2020

AUSTIN, Texas, March 3, 2020 — Rice University computer scientists have overcome a major obstacle in the burgeoning artificial intelligence industry by showing it is possible to speed up deep learning technology without specialized acceleration hardware like graphics processing units (GPUs).

Computer scientists from Rice, supported by collaborators from Intel, will present their results today at the Austin Convention Center as a part of the machine learning systems conference MLSys.

Rice University’s Anshumali Shrivastava led a team that demonstrated how to implement deep learning technology without specialized acceleration hardware like graphics processing units. Image courtesy Jeff Fitlow/Rice University.

Many companies are investing heavily in GPUs and other specialized hardware to implement deep learning, a powerful form of artificial intelligence that’s behind digital assistants like Alexa and Siri, facial recognition, product recommendation systems and other technologies. For example, Nvidia, the maker of the industry’s gold-standard Tesla V100 Tensor Core GPUsrecently reported a 41% increase in its fourth quarter revenues compared with the previous year.

Rice researchers created a cost-saving alternative to GPU, an algorithm called “sub-linear deep learning engine” (SLIDE) that uses general purpose central processing units (CPUs) without specialized acceleration hardware.

“Our tests show that SLIDE is the first smart algorithmic implementation of deep learning on CPU that can outperform GPU hardware acceleration on industry-scale recommendation datasets with large fully connected architectures,” said Anshumali Shrivastava, an assistant professor in Rice’s Brown School of Engineering who invented SLIDE with graduate students Beidi Chen and Tharun Medini.

SLIDE doesn’t need GPUs because it takes a fundamentally different approach to deep learning. The standard “back-propagation” training technique for deep neural networks requires matrix multiplication, an ideal workload for GPUs. With SLIDE, Shrivastava, Chen and Medini turned neural network training into a search problem that could instead be solved with hash tables.

This radically reduces the computational overhead for SLIDE compared to back-propagation training. For example, a top-of-the-line GPU platform like the ones AmazonGoogle and others offer for cloud-based deep learning services has eight Tesla V100s and costs about $100,000, Shrivastava said.

“We have one in the lab, and in our test case we took a workload that’s perfect for V100, one with more than 100 million parameters in large, fully connected networks that fit in GPU memory,” he said. “We trained it with the best (software) package out there, Google’s TensorFlow, and it took 3 1/2 hours to train.

“We then showed that our new algorithm can do the training in one hour, not on GPUs but on a 44-core Xeon-class CPU,” Shrivastava said.

Deep learning networks were inspired by biology, and their central feature, artificial neurons, are small pieces of computer code that can learn to perform a specific task. A deep learning network can contain millions or even billions of artificial neurons, and working together they can learn to make human-level, expert decisions simply by studying large amounts of data. For example, if a deep neural network is trained to identify objects in photos, it will employ different neurons to recognize a photo of a cat than it will to recognize a school bus.

“You don’t need to train all the neurons on every case,” Medini said. “We thought, ‘If we only want to pick the neurons that are relevant, then it’s a search problem.’ So, algorithmically, the idea was to use locality-sensitive hashing to get away from matrix multiplication.”

Hashing is a data-indexing method invented for internet search in the 1990s. It uses numerical methods to encode large amounts of information, like entire webpages or chapters of a book, as a string of digits called a hash. Hash tables are lists of hashes that can be searched very quickly.

“It would have made no sense to implement our algorithm on TensorFlow or PyTorch because the first thing they want to do is convert whatever you’re doing into a matrix multiplication problem,” Chen said. “That is precisely what we wanted to get away from. So we wrote our own C++ code from scratch.

Shrivastava said SLIDE’s biggest advantage over back-propagation is that it is data parallel.

“By data parallel I mean that if I have two data instances that I want to train on, let’s say one is an image of a cat and the other of a bus, they will likely activate different neurons, and SLIDE can update, or train on these two independently,” he said. “This is much a better utilization of parallelism for CPUs.

“The flipside, compared to GPU, is that we require a big memory,” he said. “There is a cache hierarchy in main memory, and if you’re not careful with it you can run into a problem called cache thrashing, where you get a lot of cache misses.”

Shrivastava said his group’s first experiments with SLIDE produced significant cache thrashing, but their training times were still comparable to or faster than GPU training times. So he, Chen and Medini published the initial results on arXiv in March 2019 and uploaded their code to GitHub. A few weeks later, they were contacted by Intel.

“Our collaborators from Intel recognized the caching problem,” he said. “They told us they could work with us to make it train even faster, and they were right. Our results improved by about 50% with their help.”

Shrivastava said SLIDE hasn’t yet come close to reaching its potential.

“We’ve just scratched the surface,” he said. “There’s a lot we can still do to optimize. We have not used vectorization, for example, or built-in accelerators in the CPU, like Intel Deep Learning Boost. There are a lot of other tricks we could still use to make this even faster.”

Shrivastava said SLIDE is important because it shows there are other ways to implement deep learning.

“The whole message is, ‘Let’s not be bottlenecked by multiplication matrix and GPU memory,’” Chen said. “Ours may be the first algorithmic approach to beat GPU, but I hope it’s not the last. The field needs new ideas, and that is a big part of what MLSys is about.”

Additional co-authors include James Farwell, Sameh Gobriel and Charlie Tai, all of Intel Labs.

The research was supported by the National Science Foundation (NSF-1652131, NSF-BIGDATA 1838177), the Air Force Office of Scientific Research (FA9550-18-1-0152), Amazon and the Office of Naval Research.

Links and resources:

A copy of the MLSys paper is available at: https://www.cs.rice.edu/~as143/Papers/SLIDE_MLSys.pdf

About Rice University 

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.


Source: Jade Boyd, Rice University 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire