Rice University Engineers Develop Deep Learning Computer That Accurately Forecasts Heat Waves, Cold Spells

February 4, 2020

HOUSTON, Feb. 4, 2020 — Rice University engineers have created a deep learning computer system that taught itself to accurately predict extreme weather events, like heat waves, up to five days in advance using minimal information about current weather conditions.

Ironically, Rice’s self-learning “capsule neural network” uses an analog method of weather forecasting that computers made obsolete in the 1950s. During training, it examines hundreds of pairs of maps. Each map shows surface temperatures and air pressures at five-kilometers height, and each pair shows those conditions several days apart. The training includes scenarios that produced extreme weather — extended hot and cold spells that can lead to deadly heat waves and winter storms. Once trained, the system was able to examine maps it had not previously seen and make five-day forecasts of extreme weather with 85% accuracy.

With further development, the system could serve as an early warning system for weather forecasters, and as a tool for learning more about the atmospheric conditions that lead to extreme weather, said Rice’s Pedram Hassanzadeh, co-author of a study about the system published online this week in the American Geophysical Union’s Journal of Advances in Modeling Earth Systems.

The accuracy of day-to-day weather forecasts has improved steadily since the advent of computer-based numerical weather prediction (NWP) in the 1950s. But even with improved numerical models of the atmosphere and more powerful computers, NWP cannot reliably predict extreme events like the deadly heat waves in France in 2003 and in Russia in 2010.

A map of daytime high temperatures on Jan. 30, 2019, based on NOAA Real-Time Mesoscale Analysis (RTMA) data. The cold wave that struck the U.S. Midwest and eastern Canada in late January 2019 killed more than 20 people and produced the coldest temperatures in more than 20 years over much of the region. Map by NOAA Climate.gov, based on RTMA data provided by Steve Levine/NCEP.

“It may be that we need faster supercomputers to solve the governing equations of the numerical weather prediction models at higher resolutions,” said Hassanzadeh, an assistant professor of mechanical engineering and of Earth, environmental and planetary sciences at Rice. “But because we don’t fully understand the physics and precursor conditions of extreme-causing weather patterns, it’s also possible that the equations aren’t fully accurate, and they won’t produce better forecasts, no matter how much computing power we put in.”

In late 2017, Hassanzadeh and study co-authors and graduate students Ashesh Chattopadhyay and Ebrahim Nabizadeh decided to take a different approach.

“When you get these heat waves or cold spells, if you look at the weather map, you are often going to see some weird behavior in the jet stream, abnormal things like large waves or a big high-pressure system that is not moving at all,” Hassanzadeh said. “It seemed like this was a pattern recognition problem. So we decided to try to reformulate extreme weather forecasting as a pattern-recognition problem rather than a numerical problem.”

A schematic representation of the capsule neural network Rice University engineers created to forecast extreme weather events. Mario Norton/Rice University Digital Media Commons.

Deep learning is a form of artificial intelligence, in which computers are “trained” to make humanlike decisions without being explicitly programmed for them. The mainstay of deep learning, the convolutional neural network, excels at pattern recognition and is the key technology for self-driving cars, facial recognition, speech transcription and dozens of other advances.

“We decided to train our model by showing it a lot of pressure patterns in the five kilometers above the Earth, and telling it, for each one, ‘This one didn’t cause extreme weather. This one caused a heat wave in California. This one didn’t cause anything. This one caused a cold spell in the Northeast,’” Hassanzadeh said. “Not anything specific like Houston versus Dallas, but more of a sense of the regional area.”

At the time, Hassanzadeh, Chattopadhyay and Nabizadeh were barely aware that analog forecasting had once been a mainstay of weather prediction and even had a storied role in the D-Day landings in World War II.

“One way prediction was done before computers is they would look at the pressure system pattern today, and then go to a catalog of previous patterns and compare and try to find an analog, a closely similar pattern,” Hassanzadeh said. “If that one led to rain over France after three days, the forecast would be for rain in France.”

He said one of the advantages of using deep learning is that the neural network didn’t need to be told what to look for.

“It didn’t matter that we don’t fully understand the precursors because the neural network learned to find those connections itself,” Hassanzadeh said. “It learned which patterns were critical for extreme weather, and it used those to find the best analog.”

To demonstrate a proof-of-concept, the team used model data taken from realistic computer simulations. The team had reported early results with a convolutional neural network when Chattopadhyay, the lead author of the new study, heard about capsule neural networks, a new form of deep learning that debuted with fanfare in late 2017, in part because it was the brainchild of Geoffrey Hinton, the founding father of convolutional neural network-based deep learning.

Unlike convolutional neural networks, capsule neural networks can recognize relative spatial relationships, which are important in the evolution of weather patterns.

“The relative positions of pressure patterns, the highs and lows you see on weather maps, are the key factor in determining how weather evolves,” Hassanzadeh said.

A map based on U.S. surface temperatures measured by NASA’s Terra satellite during a heat wave June 17-24, 2012. Colors highlight the difference between 2012 surface temperatures and the average temperatures measured at the same locations during the same eight-day period of the preceding 11 years. Warmer-than-average temperatures are shown in red, near-normal temperatures in white and cooler-than-average temperatures in blue. Image courtesy of J. Allen and A. Voiland/NASA Earth Observatory.

Another significant advantage of capsule neural networks was that they don’t require as much training data as convolutional neural networks. There’s only about 40 years of high-quality weather data from the satellite era, and Hassanzadeh’s team is working to train its capsule neural network on observational data and compare its forecasts with those of state-of-the-art NWP models.

“Our immediate goal is to extend our forecast lead time to beyond 10 days, where NWP models have weaknesses,” he said.

Though much more work is needed before Rice’s system can be incorporated into operational forecasting, Hassanzadeh hopes it might eventually improve forecasts for heat waves and other extreme weather.

“We are not suggesting that at the end of the day this is going to replace NWP,” he said. “But this might be a useful guide for NWP. Computationally, this could be a super cheap way to provide some guidance, an early warning, that allows you to focus NWP resources specifically where extreme weather is likely.”

Hassanzadeh said his team is also interested in finding out what patterns the capsule neural network uses to make its predictions.

“We want to leverage ideas from explainable AI (artificial intelligence) to interpret what the neural network is doing,” he said. “This might help us identify the precursors to extreme-causing weather patterns and improve our understanding of their physics.”

The research was supported by NASA (80NSSC17K0266), the National Academies’ Gulf Research Program and a BP High-Performance Computing Graduate Fellowship from Rice’s Ken Kennedy Institute. Computing resources were provided by the Texas Advanced Computing Center and Pittsburgh Supercomputing Center under the National Science Foundation-supported XSEDE project (ATM170020) and Rice’s Center for Research Computing in partnership with the Ken Kennedy Institute.

Links and resources:

The DOI of the JAMES paper is: 10.1029/2019MS001958

A copy of the paper is available at: https://doi.org/10.1029/2019MS001958

About Rice University 

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.


Source: Jade Boyd, Rice University 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire