Rice University Team to Unveil PlinyCompute

June 13, 2018

HOUSTON, June 13 — Computer scientists from Rice University’s DARPA-funded Pliny Project believe they have the answer for every stressed-out systems programmer who has struggled to implement complex objects and workflows on ‘big data’ platforms like Spark and thought: “Isn’t there a better way?”

Rice’s PlinyCompute will be unveiled here Thursday at the 2018 ACM SIGMOD conference. In a peer-reviewed conference paper, the team describes PlinyCompute as “a system purely for developing high-performance, big data codes.”

Like Spark, PlinyCompute aims for ease of use and broad versatility, said Chris Jermaine, the Rice computer science professor leading the platform’s development. Unlike Spark, PlinyCompute is designed to support the intense kinds of computation that have only previously been possible with supercomputers, or high-performance computers (HPC).

“With machine learning, and especially deep learning, people have seen what complex analytics algorithms can do when they’re applied to big data,” Jermaine said. “Everyone, from Fortune 500 executives to neuroscience researchers, is clamoring for more and more complex algorithms, but systems programmers have mostly bad options for providing that today. HPC can provide the performance, but it takes years to learn to write code for HPC, and perhaps worse, a tool or library that might take days to create with Spark can take months to program on HPC.

“Spark was built for big data, and it supports things that HPC doesn’t, like easy load balancing, fault tolerance and resource allocation, which are an absolute must for data-intensive tasks,” he said. “Because of that, and because development times are far shorter than with HPC, people are building new tools that run on top of Spark for complex tasks like machine learning, graph analytics and more.”

Because Spark wasn’t designed with complex computation in mind, its computational performance can only be pushed so far, said Jia Zou, a Rice research scientist and first author of the ACM SIGMOD paper describing PlinyCompute.

“Spark is built on top of the Java Virtual Machine, or JVM, which manages runtimes and abstracts away most of the details regarding memory management,” said Zou, who spent six years researching large-scale analytics and data management systems at IBM Research-China before joining Rice in 2015. “Spark’s performance suffers from its reliance on the JVM, especially as computational demands increase for tasks like training deep neural networks for deep learning.

“PlinyCompute is different because it was designed for high performance from the ground up,” Zou said. “In our benchmarking, we found PlinyCompute was at least twice as fast and in some cases 50 times faster at implementing complex object manipulation and library-style computations as compared to Spark.”

She said the tests showed that PlinyCompute outperforms comparable tools for construction of high-performance tools and libraries.

Jermaine said not all programmers will find it easy to write code for PlinyCompute. Unlike the Java-based coding required for Spark, PlinyCompute libraries and models must be written in C++.

“There’s more flexibility with PlinyCompute,” Jermaine said. “That can be a challenge for people who are less experienced and knowledgeable about C++, but we also ran a side-by-side comparison of the number of lines of code that were needed to complete various implementations, and for the most part there was no significant difference between PlinyCompute and Spark.”

The Pliny Project, which launched in 2014, is an $11 million, DARPA-funded effort to create sophisticated programming tools that can both “autocomplete” and “autocorrect” code for programmers, in much the same way that software completes search queries and corrects spelling on web browsers and smartphones. Pliny uses machine learning to read and learn from billions of lines of open-source computer programs, and Jermaine said PlinyCompute was born from this effort.

“It’s a computationally complex machine learning application, and there really wasn’t a good tool for creating it,” he said. “Early on, we recognized that PlinyCompute was a tool that could be applied to problems far beyond what we were using it for in the Pliny Project.”

Installation and deployment information, an API, FAQ, tutorials and more are available at plinycompute.rice.edu.

The research was also supported by the National Science Foundation.

Additional co-authors on the PlinyCompute SIGMOD paper include Matthew Barnett, Tania Lorido-Botran, Shangyu Luo, Carlos Monroy, Sourav Sikdar, Kia Teymourian and Binhang Yuan, all of Rice.

The DOI of the SIGMOD paper is: 10.1145/3183713.3196933

A copy of the SIGMOD paper is available at: https://dl.acm.org/citation.cfm?id=3196933

PlinyCompute homepage: http://plinycompute.rice.edu/

About Rice University

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview.


Source: Rice University

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire