RIKEN and Fujitsu Announce New 64 Qubit Superconducting Quantum Computer

October 5, 2023

TOKYO, Oct. 5, 2023 — Fujitsu and RIKEN today announced the successful development of a new 64 qubit superconducting quantum computer at the RIKEN RQC-Fujitsu Collaboration Center. The new quantum computer leverages the technology developed by RIKEN and a consortium of joint research partners including Fujitsu for Japan’s first superconducting quantum computer, which was first revealed to the public in March 2023.

Quantum computer developed at the RIKEN RQC-Fujitsu Collaboration Center.

Accompanying this announcement, Fujitsu and RIKEN further revealed the launch of a platform for hybrid quantum computing, which combines the computing power of the newly developed 64 qubit superconducting quantum computer with one of the world’s largest 40 qubit quantum computer simulators developed by Fujitsu. Fujitsu and RIKEN will provide the new platform to companies and research institutions that are conducting joint research with Fujitsu and RIKEN from October 5, 2023.

The new hybrid platform enables easy comparison of calculation results of noisy intermediate-scale quantum (NISQ) computers against error-free results from quantum simulators, contributing to accelerated research in areas including performance evaluation of error mitigation algorithms in quantum applications.

Fujitsu and RIKEN are further developing a hybrid quantum algorithm that links superconducting quantum computing with high-performance computing (HPC). By linking a quantum computer with a quantum simulator that runs on an HPC, Fujitsu and RIKEN have succeeded in developing a hybrid quantum algorithm that enables quantum chemistry calculations with greater accuracy than conventional algorithms. The two partners plan to include this algorithm in the new platform.

Yukihiro Okuno, senior research scientist with Fujifilm Corporation, commented: “We anticipate that the ultrafast computing power of quantum computers enables unprecedented high-precision chemical calculations, which will greatly contribute to materials development. Fujifilm will leverage the new hybrid quantum computing platform to research the effects of noise on current quantum computing results. We will also continue to develop innovative materials through the application of quantum computing.”

Moving forward, Fujitsu and RIKEN will promote the development of technologies including high-density implementation to realize a 1,000 qubit superconducting quantum computer, as well as technologies to achieve more precise quantum gate operations.

Fujitsu and RIKEN will further provide quantum computing and quantum simulation resources to customers for applications in various fields including finance and drug discovery through this platform and promote R&D activities for quantum applications through joint research to accelerate the practical application of both quantum computing hardware and software.

Leading the Way to the Age of Practical Quantum Computing

The development of various quantum computing architectures has been progressing at high speed in recent years. The creation of reliable computing results with quantum computers, however, represents an ongoing challenge, as current NISQ systems are still suffering from computing errors due to noise in the surrounding environment.

Experts anticipate that the realization of a practical fault-tolerant quantum computer (FTQC) that can provide reliable, accurate results, will take a decade or longer. In addition, the simultaneous development of quantum applications to realize the practical use of quantum computers once a FTQC is available represents another priority.

Quantum simulators, which can digitally imitate quantum computation, provide a vital bridge toward the development of practical, fault-tolerant quantum computing. Unlike current quantum computers, quantum simulators can perform error-free and long-step (quantum-like) computations as they do not rely on error-prone qubits. However, as quantum simulators only digitally reproduce quantum computation on classical computers, they cannot realize actual quantum acceleration, an expected benefit of practical quantum computers.

To address these issues, Fujitsu and RIKEN have launched a new hybrid quantum computing platform that combines the advantages of superconducting quantum computers and quantum simulators, ultimately contributing to further usage of the superconducting quantum computer developed at the RIKEN RQC-Fujitsu Collaboration Center and the development of new quantum applications.

About the New 64 Qubit Superconducting Quantum Computer Developed at the Riken RQC-Fujitsu Collaboration Center

The new 64 qubit superconducting quantum computer utilized in the new hybrid quantum computing platform leverages the technology of Japan’s first superconducting quantum computer announced by RIKEN in March 2023 as part of the Japanese Ministry of Education, Culture, Sports, Science and Technology’s Quantum Leap Flagship Program (MEXT Q-LEAP) (Team Leader: Yasunobu Nakamura; Grant No. JPMXS 0118068682), and has been developed at the RIKEN RQC-Fujitsu Collaboration Center in cooperation with Nippon Telegraph and Telephone Corporation (NTT).

The computer includes an integrated 64 superconducting qubit chip (a central element for the computing functions of quantum computers) and uses a vertical wiring scheme similar to that of RIKEN’s quantum computer, making it scalable for future expansion. It further leverages qubit control software built by NTT to achieve high-precision control of qubits. The new superconducting quantum computer enables calculations of ideally up to 264 quantum superposition and entanglement states, which is expected to enable calculations on a scale that have been difficult to achieve with classical computers.

R&D of Hybrid Quantum Algorithms

Fujitsu and RIKEN are further developing hybrid quantum algorithms that link quantum computing and HPC to contribute to the solution of problems in various industries. As part of their current joint research, the two parties have developed a hybrid quantum algorithm in which a quantum simulator performs part of the calculation of an algorithm for a quantum computer.

The algorithm enables the calculation of large molecules with high accuracy using quantum algorithms and Density Matrix Embedding Theory (DMET), a quantum chemistry calculation method to divide large molecules into multiple small fragments. Fujitsu and RIKEN applied this algorithm to the calculation of the ground state energy of the H12 molecule (a chain molecule consisting of twelve hydrogen atoms) and combined it with AI-based quantum computation correction technology to mitigate the effects of noise in quantum computers. In this way, Fujitsu and RIKEN for the first time confirmed that energy calculations can be performed with higher accuracy than existing classical algorithms (CCSD(T)).

In addition to providing this technology on the new hybrid quantum computing platform in the future, Fujitsu will further work toward the realization of a computing workload broker, an AI-based software that automatically selects from different computing resources and algorithms to offer the optimal solution to customers’ problems.

About the New Hybrid Quantum Computing Platform

The new platform is implemented as a scalable cloud architecture by utilizing cloud services such as serverless computing service AWS Lambda provided by Amazon Web Services. It offers companies and research institutions collaborating with Fujitsu and RIKEN a seamless access environment for both the quantum computer and quantum simulator via common APIs.

The two parties anticipate that the new platform will enable flexible switching between quantum computing and quantum simulation necessary for the development of hybrid algorithms that use both classical and quantum computers, such as the Variational Quantum Eigensolver (VQE) algorithm for molecular energy calculation in quantum chemistry or quantum machine learning algorithms in finance. Fujitsu and RIKEN further expect that the new platform can be linked to external quantum chemistry calculation libraries in the future.

Overview of the new platform for hybrid quantum computing

Future Plans

Moving forward, Fujitsu and RIKEN will continue joint development at the RIKEN RQC-Fujitsu Collaboration Center toward the realization of a large-scale quantum computer with 1,000 qubits and will provide the jointly developed technologies via the new hybrid quantum platform.

RIKEN and Fujitsu will strengthen their cooperation in the development of practical applications for quantum computers, and promote R&D of quantum computing simulation technology and software technology that orchestrates quantum computing with HPC.

Fujitsu has been conducting joint research with Fujifilm Corporation, Tokyo Electron Limited, Mizuho DI Financial Technology Co., Ltd. and Mitsubishi Chemical Group Corporation on the development of pioneering quantum applications using quantum simulators.

Moving forward, Fujitsu in cooperation with RIKEN aims to accelerate joint research using the new hybrid platform with various companies, universities and research institutes, and expand the search for practical hybrid quantum applications in various fields including materials, finance, and drug discovery.


Source: Fujitsu

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Quantum Companies D-Wave and Rigetti Again Face Stock Delisting

October 4, 2024

Both D-Wave (NYSE: QBTS) and Rigetti (Nasdaq: RGTI) are again facing stock delisting. This is a third time for D-Wave, which issued a press release today following notification by the SEC. Rigetti was notified of delisti Read more…

Alps Scientific Symposium Highlights AI’s Role in Tackling Science’s Biggest Challenges

October 4, 2024

ETH Zürich recently celebrated the launch of the AI-optimized “Alps” supercomputer with a scientific symposium focused on the future possibilities of scientific AI thanks to increased compute power and a flexible ar Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvidia GPUs). Recently, MLCommons introduced the results of its Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever physical processor they want, without making code changes, the Read more…

IBM Quantum Summit Evolves into Developer Conference

October 2, 2024

Instead of its usual quantum summit this year, IBM will hold its first IBM Quantum Developer Conference which the company is calling, “an exclusive, first-of-its-kind.” It’s planned as an in-person conference at th Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed that the company will release Falcon Shores as a GPU. The com Read more…

The New MLPerf Storage Benchmark Runs Without ML Accelerators

October 3, 2024

MLCommons is known for its independent Machine Learning (ML) benchmarks. These benchmarks have focused on mathematical ML operations and accelerators (e.g., Nvi Read more…

DataPelago Unveils Universal Engine to Unite Big Data, Advanced Analytics, HPC, and AI Workloads

October 3, 2024

DataPelago today emerged from stealth with a new virtualization layer that it says will allow users to move AI, data analytics, and ETL workloads to whatever ph Read more…

Stayin’ Alive: Intel’s Falcon Shores GPU Will Survive Restructuring

October 2, 2024

Intel's upcoming Falcon Shores GPU will survive the brutal cost-cutting measures as part of its "next phase of transformation." An Intel spokeswoman confirmed t Read more…

How GenAI Will Impact Jobs In the Real World

September 30, 2024

There’s been a lot of fear, uncertainty, and doubt (FUD) about the potential for generative AI to take people’s jobs. The capability of large language model Read more…

IBM and NASA Launch Open-Source AI Model for Advanced Climate and Weather Research

September 25, 2024

IBM and NASA have developed a new AI foundation model for a wide range of climate and weather applications, with contributions from the Department of Energy’s Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Building the Quantum Economy — Chicago Style

September 24, 2024

Will there be regional winner in the global quantum economy sweepstakes? With visions of Silicon Valley’s iconic success in electronics and Boston/Cambridge� Read more…

How GPUs Are Embedded in the HPC Landscape

September 23, 2024

Grasping the basics of Graphics Processing Unit (GPU) architecture is crucial for understanding how these powerful processors function, particularly in high-per Read more…

Shutterstock_2176157037

Intel’s Falcon Shores Future Looks Bleak as It Concedes AI Training to GPU Rivals

September 17, 2024

Intel's Falcon Shores future looks bleak as it concedes AI training to GPU rivals On Monday, Intel sent a letter to employees detailing its comeback plan after Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

Granite Rapids HPC Benchmarks: I’m Thinking Intel Is Back (Updated)

September 25, 2024

Waiting is the hardest part. In the fall of 2023, HPCwire wrote about the new diverging Xeon processor strategy from Intel. Instead of a on-size-fits all approa Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Ansys Fluent® Adds AMD Instinct™ MI200 and MI300 Acceleration to Power CFD Simulations

September 23, 2024

Ansys Fluent® is well-known in the commercial computational fluid dynamics (CFD) space and is praised for its versatility as a general-purpose solver. Its impr Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Shutterstock 1024337068

Researchers Benchmark Nvidia’s GH200 Supercomputing Chips

September 4, 2024

Nvidia is putting its GH200 chips in European supercomputers, and researchers are getting their hands on those systems and releasing research papers with perfor Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Leading Solution Providers

Contributors

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

IBM Develops New Quantum Benchmarking Tool — Benchpress

September 26, 2024

Benchmarking is an important topic in quantum computing. There’s consensus it’s needed but opinions vary widely on how to go about it. Last week, IBM introd Read more…

Quantum and AI: Navigating the Resource Challenge

September 18, 2024

Rapid advancements in quantum computing are bringing a new era of technological possibilities. However, as quantum technology progresses, there are growing conc Read more…

Intel Customizing Granite Rapids Server Chips for Nvidia GPUs

September 25, 2024

Intel is now customizing its latest Xeon 6 server chips for use with Nvidia's GPUs that dominate the AI landscape. The chipmaker's new Xeon 6 chips, also called Read more…

Google’s DataGemma Tackles AI Hallucination

September 18, 2024

The rapid evolution of large language models (LLMs) has fueled significant advancement in AI, enabling these systems to analyze text, generate summaries, sugges Read more…

Microsoft, Quantinuum Use Hybrid Workflow to Simulate Catalyst

September 13, 2024

Microsoft and Quantinuum reported the ability to create 12 logical qubits on Quantinuum's H2 trapped ion system this week and also reported using two logical qu Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

US Implements Controls on Quantum Computing and other Technologies

September 27, 2024

Yesterday the Commerce Department announced export controls on quantum computing technologies as well as new controls for advanced semiconductors and additive Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire