RIKEN: Wiring Architecture Will Produce Bigger and Better Quantum Circuits

July 6, 2020

July 6, 2020 — Last year, Google produced a 53-qubit quantum computer that could perform a specific calculation significantly faster than the world’s fastest supercomputer. Like most of today’s largest quantum computers, this system boasts tens of qubits—the quantum counterparts to bits, which encode information in conventional computers.

To make larger and more useful systems, most of today’s prototypes will have to overcome the challenges of stability and scalability. The latter will require increasing the density of signaling and wiring, which is hard to do without degrading the system’s stability. I believe a new circuit-wiring scheme developed over the last three years by RIKEN’s Superconducting Quantum Electronics Research Team, in collaboration with other institutes, opens the door to scaling up to 100 or more qubits within the next decade. Here, I discuss how.

Challenge one: Scalability

This schematic image of integrated superconducting qubits and their packaging,shows the qubits as green dots with rings, which are laid out on top of a silicon chip (in red). A number of holes through the chip electrically connect the top and bottom surfaces. The blue wires on top are circuit elements for the readout of the qubits. Coaxial wiring (with gold-plated springloaded pins) is connected to the backside of the chip, and these control and read the qubits. Image courtesy of Yutaka Tabuchi. 

Quantum computers process information using delicate and complex interactions based on the principles of quantum mechanics. To explain this further we must understand qubits. A quantum computer is built from individual qubits, which are analogous to the binary bits used in conventional computers. But instead of the zero or one binary states of a bit, a qubit needs to maintain a very fragile quantum state. Rather than just being zero or one, qubits can also be in a state called a superposition—where they are sort of in a state of both zero and one at the same time. This allows quantum computers based on qubits to process data in parallel for each possible logical state, zero or one, and they can thus perform more efficient, and thus faster, calculations than conventional computers based on bits for particular types of problems.

However, it is much harder to create a qubit than a conventional bit, and full control over the quantum-mechanical behavior of a circuit is needed. Scientists have come up with a few ways to do this with some reliability. At RIKEN, a superconducting circuit with an element called a Josephson junction is used to create a useful quantum-mechanical effect. In this way, qubits can now be produced reliably and repeatedly with nanofabrication techniques commonly used in the semiconductor industry.

The challenge of scalability arises from the fact that each qubit then needs wiring and connections that produce controls and readouts with minimal crosstalk. As we moved past tiny two-by-two or four-by-four arrays of qubits, we have realized just how densely the associated wiring can be packed, and we’ve had to create better systems and fabrication methods to avoid getting our wires crossed, literally.

At RIKEN, we have built a four-by-four array of qubits using our own wiring scheme, where the connections to each qubit are made vertically from the backside of a chip, rather than a separate ‘flip chip’ interface used by other groups that brings the wiring pads to the edges of a quantum chip. This involves some sophisticated fabrication with a dense array of superconducting vias (electrical connections) through a silicon chip, but it should allow us to scale up to much larger devices. Our team is working toward a 64-qubit device, which we hope to have within the next three years. This will be followed by a 100-qubit device in another five years as part of a nationally funded research program. This platform should ultimately allow up to a 1,000 qubits to be integrated on a single chip.

Challenge two: Stability

The other major challenge for quantum computers is how to deal with the intrinsic vulnerability of the qubits to fluctuations or noise from outside forces such as temperature. For a qubit to function, it needs to be maintained in a state of quantum superposition, or ‘quantum coherence’. In the early days of superconducting qubits, we could make this state last for just nanoseconds. Now, by cooling quantum computers to cryogenic temperatures and creating several other environmental controls, we can maintain coherence for up to 100 microseconds. A few hundred microseconds would allow us to perform a few thousand information processing operations, on average, before coherence is lost.

In theory, one way we could deal with instability is to use quantum error correction, where we exploit several physical qubits to encode a single ‘logical qubit’, and apply an error correction protocol that can diagnose and fix errors to protect the logical qubit. But realizing this is still far off for many reasons, not the least of which is the problem of scalability.

Quantum circuits

since the 1990s, before quantum computing became a big thing. When I began, I was interested in whether my team could create and measure quantum superposition states within electric circuits. At the time, it wasn’t at all obvious if electric circuits as a whole could behave quantum mechanically. To realize a stable qubit in a circuit and create switch-on and -off states in the circuit, the circuit also needed to be capable of supporting a superposition state.

We eventually came up with the idea of using a superconducting circuit. The superconducting state is free of all electrical resistance and losses, and so it is streamlined to respond to small quantum-mechanical effects. To test this circuit, we used a microscale superconducting island made of aluminum, which was connected to a larger superconducting ground electrode via a Josephson junction—a junction separated by a nanometer-thick insulating barrier—and we trapped superconducting electron pairs that tunneled across the junction. Because of the smallness of the aluminum island, it could accommodate at most one excess pair due to an effect known as Coulomb blockade between negatively charged pairs. The states of zero or one excess pairs in the island can be used as the state of a qubit. The quantum-mechanical tunneling maintains the qubit’s coherence and allows us to create a superposition of the states, which is fully controlled with microwave pulses.

Hybrid systems

Because of their very delicate nature, quantum computers are unlikely to be in homes in the near future. However, recognizing the huge benefits of research-oriented quantum computers, industrial giants such as Google and IBM, as well as many start-up companies and academic institutes around the world, are increasingly investing in research.

A commercial quantum-computing platform with full error correction is probably still more than a decade away, but state-of-the-art technical developments are already bringing about the possibility of new science and applications. Smaller scale quantum circuits already perform useful tasks in the lab.

For example, we use our superconducting quantum-circuit platform in combination with other quantum-mechanical systems. This hybrid quantum system allows us to measure a single quantum reaction within collective excitations—be it precessions of electron spins in a magnet, crystal lattice vibrations in a substrate, or electromagnetic fields in a circuit—with unprecedented sensitivity. These measurements should advance our understanding of quantum physics, and with it quantum computing. Our system is also sensitive enough to measure a single photon at microwave frequencies, whose energy is about five orders of magnitude lower than that of a visible-light photon, without absorbing or destroying it. The hope is that this will serve as a building block for quantum networks connecting distant qubit modules, among other things.

Quantum internet

Interfacing a superconducting quantum computer to an optical quantum communication network is another future challenge for our hybrid system. This would be developed in anticipation of a future that includes a quantum internet connected by optical wiring reminiscent of today’s internet. However, even a single photon of infrared light at a telecommunication wavelength cannot directly hit a superconducting qubit without disturbing the quantum information, so careful design is a must. We are currently investigating hybrid quantum systems that transduce quantum signals from a superconducting qubit to an infrared photon, and vice versa, via other quantum systems, such as one that involves a tiny acoustic oscillator.

Although many complex issues need to be overcome, scientists can see a future enhanced by quantum computers on the horizon. In fact, quantum science is already in our hands every day. Transistors and laser diodes would have never been invented without a proper understanding of the properties of electrons in semiconductors, which is totally based on understanding quantum mechanics. So through smart phones and the internet, we are already totally reliant on quantum mechanics, and we will only become more so in the future.

References

  • 1.Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box Nature 398, 786–788 (1999) doi: 10.1038/19718The webpage will open in a new tab.
  • 2.Clerk, A. A., Lehnert, K. W, Berte, P., Petta, J. R & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics Nature Physics 16, 257-267 (2020). doi: 10.1038/s41567-020-0797-9The webpage will open in a new tab.
  • 3.Lachance-Quirion, D., Wolski, S. P., Tabuchi, Y., Kono, S., Usami, K. & Njavascript:void(0)akamura Y. Entanglement-based single-shot detection of a single magnon with a superconducting qubit Science 367, 425-428 (2020). doi: 10.1126/science.aaz9236The webpage will open in a new tab.
  • 4.Noguchi, A., Yamazaki, R., Tabuchi, Y. & Nakamura, Y. Qubit-assisted transduction for a detection of surface acoustic waves near the quantum limit Phys. Rev. Lett 119, 180505 (2017). doi: 10.1103/PhysRevLett.119.180505The webpage will open in a new tab.
  • 5.Kono, S., Koshino, K., Tabuchi, Y., Noguchi, A. & Nakamura, Y. Quantum non-demolition detection of an itinerant microwave photon Nature Physics 14, 546-549 (2018). doi: 10.1038/s41567-018-0066-3The webpage will open in a new tab.

About RIKEN 

RIKEN is Japan’s largest comprehensive research institution renowned for high-quality research in a diverse range of scientific disciplines. Founded in 1917 as a private research foundation in Tokyo, RIKEN has grown rapidly in size and scope, today encompassing a network of world-class research centers and institutes across Japan. The pages below offer an overview of RIKEN’s mission, its management structure and history, as well as information on RIKEN’s campuses and offices, its budget and personnel and its governance. We also have a video in our YouTube channel that introduces the institute.


Source: RIKEN 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Research: A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic

August 5, 2020

Within the past years, hardware vendors have started designing low precision special function units in response to the demand of the machine learning community and their demand for high compute power in low precision for Read more…

By Hartwig Anzt and Jack Dongarra

Implement Photonic Tensor Cores for Machine Learning?

August 5, 2020

Researchers from George Washington University have reported an approach for building photonic tensor cores that leverages phase change photonic memory to implement a neural network (NN). Their novel architecture, reporte Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing the pinnacle of HPE's HPC portfolio. After announcing its i Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the increasingly important goals of data best practices and work Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated, analysts said the acquisition would cement Nvidia’s stat Read more…

By George Leopold

AWS Solution Channel

AWS announces the release of AWS ParallelCluster 2.8.0

AWS ParallelCluster is a fully supported and maintained open source cluster management tool that makes it easy for scientists, researchers, and IT administrators to deploy and manage High Performance Computing (HPC) clusters in the AWS cloud. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Summer Reading: Here’s a Quantum Advantage You Can Bet On!

August 3, 2020

While quantum computing researchers today vigorously chase a demonstration of a quantum advantage – an application which when run on a quantum computer provides sufficient advantage to warrant switching from a classica Read more…

By John Russell

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Machines, Connections, Data, and Especially People: OAC Acting Director Amy Friedlander Charts Office’s Blueprint for Innovation

August 3, 2020

The path to innovation in cyberinfrastructure (CI) will require continued focus on building HPC systems and secure connections between them, in addition to the Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

PEARC20 Plenary Introduces Five Upcoming NSF-Funded HPC Systems

July 30, 2020

Five new HPC systems—three National Science Foundation-funded “Capacity” systems and two “Innovative Prototype/Testbed” systems—will be coming onlin Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Nvidia Dominates Latest MLPerf Training Benchmark Results

July 29, 2020

MLPerf.org released its third round of training benchmark (v0.7) results today and Nvidia again dominated, claiming 16 new records. Meanwhile, Google provided e Read more…

By John Russell

$39 Billion Worldwide HPC Market Faces 3.7% COVID-related Drop in 2020

July 29, 2020

Global HPC market revenue reached $39 billion in 2019, growing a healthy 8.2 percent over 2018, according to the latest analysis from Intersect360 Research. A 3 Read more…

By Tiffany Trader

Agenting Change: PEARC20 Keynote Encourages Cultural Change to Make Tech Better, More Diverse

July 29, 2020

The tech world will need to become more diverse if it is to thrive and survive, said Cherri Pancake, director of the Northwest Alliance for Computational Resear Read more…

By Ken Chiacchia, Pittsburgh Supercomputing Center/XSEDE

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

Leading Solution Providers

Contributors

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

John Martinis Reportedly Leaves Google Quantum Effort

April 21, 2020

John Martinis, who led Google’s quantum computing effort since establishing its quantum hardware group in 2014, has left Google after being moved into an advi Read more…

By John Russell

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This