RSC Group Announces New Records Set by PetaStream System

June 25, 2014

LEIPZIG, Germany, June 25 — RSC Group, the leading Russian and CIS developer and integrator of innovative high performance computing (HPC) and data center solutions, made several technology demonstrations and announcements at the International Supercomputing Conference (ISC’14) confirming the company’s leading position in advanced technology development.

New Records of RSC PetaStream

RSC demonstrated on its booth at ISC’14 the RSC PetaStream system: revolutionary ultra-high density solution with massively parallel architecture, direct liquid cooling and the newest Intel Xeon Phi 7120D setting one more world record of computing density of 1.2 PFLOPS peak performance per cabinet within just 1 m2, or 11 ft2, footprint. RSC PetaStream became even 20% more powerful since its first announcement with previous world’s record of 1 PFLOPS per rack at SC’13 in Denver (USA). The RSC’s new technology breakthrough was achieved with the newest Intel Xeon Phi 7120D coprocessor launched in March, 2014. RSC PetaStream became the world’s first HPC solution with Intel Xeon Phi 7120D.

One RSC PetaStream cabinet contains 1024 interchangeable computing nodes with 250,000 execution threads and using RSC’s direct liquid cooling technology allows efficiently remove up to 400 kW of heat. This value is 4x times greater than the previous RSC Tornado architecture achievement and sets the new world record of power density.

“We were the first in the world to develop and introduce to users ultra high dense massively parallel system based on the newest Intel Xeon Phi 7120D. RSC PetaStream leading characteristics were achieved as result of the hard work and extensive experience of RSC engineers in development of extra efficient direct liquid cooling technologies and ultra-high density integration of supercomputers based on standard server components and technologies. It helped us to achieve such a breakthrough setting the new world records of computing density with 1.2 PFLOPS peak performance and power density of 400 kW per cabinet within just 1 m2, or 11 ft2, footprint,” – said Alexey Shmelev, COO of RSC Group.

RSC PetaStream solution is an innovative implementation of massively parallel architecture using the best available industrial components, highly dense integration and unique system architecture delivered by the RSC engineers. Every compute node is independent and interchangeable, based on Intel Xeon Phi 7120D coprocessor featuring 61 cores and 16GB of high-bandwidth GDDR5 memory and works under Linux family operating system’s control. All nodes of RSC PetaStream system are tightly interconnected using high speed InfiniBand FDR network.

Thanks to x86 architecture of the chosen microprocessor, the developers can use existing programming models and run existing scientific applications on the ExaScale-class supercomputer. At the same time, flexibility of RSC PetaStream architecture allows to develop, optimize and test new innovative programming models and applications for the future massively parallel supercomputers based on perspective many-core processors.

In addition to the highest performance provided by the RSC PetaStream, the use of highly efficient power distribution based on 400V direct current and RSC’s proven direct liquid cooling technology enabled work record computational density of 1.2 PFLOPS in one rack with just 2.2 m3 or 77 ft3 volume. High energy efficiency and scalability leads to over 2x reduction of the electricity usage comparing to traditional HPC cluster systems when running applications with high degree of parallelism.

The new technologies developed by RSC for the RSC PetaStream are the significant step towards practical development of ExaScale-level supercomputers, providing millions of execution threads for the user applications.

Scientific results achieved on the RSC PetaStream

Using RSC PetaStream in practice has already enabled a number of promising scientific discoveries. Some of the research results were presented at the International Supercomputer Conference ISC’14 in Leipzig (Germany).

The AstroPhi astrophysics code developed by research scientists of the Institute of Computational Mathematics and Mathematical Geophysics of the Siberian Branch of the Russian Academy of Sciences (ICMMG SB RAS) and Novosibirsk State University (NSU) was used on the RSC PetaStream system to study collisions of galaxies.

“Collision of galaxies is an ordinary event in their evolution. Every galaxy commits up to ten collisions per Hubble time and the collisions lead to their wide diversity of galaxies observed. Supercomputer simulation of such processes is the only way to study them. With the increasing number of supercomputers with hybrid architecture the most urgent problem is the creation of the efficient numerical codes for such computing platforms. It cannot be done without co-design of the entire computing platform, its software and applications. Thanks to the innovative technology developed by RSC Group and the opportunity to testthe AstroPhi application on RSC PetaStream with Intel Xeon Phi based nodes, the simulation of the collision of galaxies can be done with the record resolution. The calculation speedon a single RSC PetaStream module is 6x higher than on 4 nodes based on Intel Xeon E5-2690 processors”- noted Igor Chernykh from ICMMG SB RAS and Igor Kulikov from NSU.

Researchers from St.Petersburg State Polytechnic University (SPbSPU) and Petersburg Nuclear Physics Institute NRC “Kurchatov Institute” (PNPI NRC KI) held series of simulations and obtained new results with the RSC PetaStream HPC system.Study of processes vital for the cell lifecycle, aging, and tumorgenesis requires research of the fundamental laws and regulation mechanisms of gene transcription (reading process of genetic information).

The aim of this work is to study various intermediate assembly states of nucleosomes using molecular dynamics (MD) simulation methods (one of the results of these methods are particles trajectories) available in open source software package GROMACS. Solving such problems requires significant computing resources – the typical time-step size is 1-2 fs (1‑2 ∙ 10-15 seconds), with the meaningful observation time ranges around 100 ns (10-7 s). Simulated system contains a large number of point charges distributed in the volume that usually has a negative impact on the scalability and can be solved by adjusting of the MD-engine parameters.

“GROMACS MD-engine has optimizations for different hardware architectures that enable effective application on many supercomputers, with scalability up to the level of 200 atoms per core. The latest versions of GROMACS have support for native execution on Intel Xeon Phi coprocessor that allows us to use the RSC PetaStream system. Even using single RSC PetaStream computing module we achieved 4.6 TFLOPS level of sustained performance and solution rate of 1,9 ns/day, which is comparable to 10 dual-processor nodes with Intel Xeon E5-2695 v2. Using massively parallel systems like the RSC PetaStream makes it possible studying broader time scales (up to milliseconds) and larger system,”- explains Evgeniy Petukhov, Head of System Software Department, SPbSTU and Alexey Shvetsov, Junior Scientist, Department of Molecular and Radiation Biophysics PNPI NRC KI.

The research, intended for solving important epidemiological problem – the tracking of the dynamics of the spread of infection during the epidemic in Finland 2009-2011 is being conducted by international team of researchers from University of Helsinki, National Institute of Health and Welfare (Finland), Rybinsk State Aviation Technical University (Russia). Researchers propose Bayesian model of the spread of infection and corresponding implementation based on the importance sampling approach. The main purpose is to estimate the number of hidden (unobserved) cases of illness to effectively design control measures (such as vaccinations or quarantines). The computational statistics methods based on the Monte-Carlo approach used for the estimation require significant computational resources to get the values of likelihood function for given set of parameters – the more iterations performed, the better the estimation is.

“One RSC PetaStream module based on massively parallel architecture with eight Intel Xeon Phi provides required performance level for MCMC-sampling method to obtain optimal trajectories and enabled simulation speed over than 360,000 Monte-Carlo casts per second. Such high performance gives the possibility to make precise estimations of unobserved cases of illness to effectively track spread of the infection and prevent pandemics,” – states the team of researchers.

At the Chemistry department of the Lomonosov Moscow State University with support from Innovative Computing Laboratory of University of Tennessee the MAGMA linear algebra library has been adopted to the new hardware platform and its performance explored. It has been shown that achieved performance can be more that 60% of theoretical (peak) performance that additionally re-instates the computational efficiency of the system. The results are published as a part of ISC’14 scientific program.

RSC Tornado Expansion Packs focused on specific customer solutions

RSC specialists have analyzed long-term experience of development, deployment and operation of high-performance cluster systems for HPC and data center segments and optimized the approach to creating solutions based on time proven RSC Tornado cluster architecture in the area of implementing computing system management and building of server node configurations. This enabled transition to the base configuration of RSC Tornado node (2-processor configuration based on high-performance Intel Xeon E5-2600 v2 processors) and additional expansion packs that most fully meet specific requirements of various customers.

For example, RSC Tornado HPC Expansion Pack focused on high-performance computing with two Intel Xeon Phi coprocessors improves computing node performance to 2.93 TFLOPS.

RSC Tornado BigData Expansion Pack provides price-performance optimized configuration for high-performance data processing.

RSC Tornado VDI Expansion Pack is intended for virtualization and remote workplace access and for CAD/CAM/CAE fields. It is based on AMD FirePro S10000 or NVIDIA GRID K1/K2 cards and on Intel SSD DC P3700 high-performance solid-state drives.

RSC Tornado Security & Protection Expansion Pack is developed specifically for customers from financial vertivcal market and other users that require maximum access speed and data protection.

Hardware and software package RSC SDM Expansion Pack implements Software Defined Management concept developed by RSC specialists for RSC Tornado and RSC PetaStream nodes improving manageability and accessibility of computing systems for user applications. Flexible combination of management agents (infrastructure components, computing nodes, scheduler and user application libraries) within the scope of this concept enables creation of new Task-Oriented Management Applications (TOMA) that improve computing system efficiency and reduce operating costs. One of the examples of this is an application for adaptive management of task scheduler priorities that considers available power resources and actual capacity of data center cooling systems to prevent task termination and resulting loss of critical data on temporary infrastructure failures.

Other specialized expansion packs can also be created on specific requests of the customers. This approach has significantly improved availability of specialized configurations and made modernization process much more easier while preserving record compactness, computing density and power density of solutions based on RSC Tornado cluster architecture.

About RSC Group

RSC Group is the leading Russian and CIS developer and integrator of innovative HPC and data center solutions based on Intel architecture and technology, advanced liquid cooling and its own extensive know-how. The company’s potential allows for practical creation of the most energy efficient solutions with record PUE, realization of industry-highest computing density based on x86 standard processors, completely green design, the highest reliability of solutions, complete noiselessness of computing modules, 100 percent compatibility and guaranteed scalability, while ensuring lowest total cost of ownership and small energy consumption. Additionally RSC specialists are experienced in development and implementation of a complete software solution stack for increased effectiveness and usability of supercomputer systems ranging from system software to vertically oriented platforms on the basis of cloud computing technology.

Source: RSC Group

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, supercomputer performance is measured using the High-Performance Li Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafloppers only. The entry point for the new list is 1.022 petaf Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Avoid AI Redo’s by Starting with the Right Infrastructure

Do you know if you have the right infrastructure for AI? Many organizations don’t have it. In a recent IDC survey, “77.1% of respondents say they ran into one or more limitations with their AI infrastructure on-premise and 90.3% ran into compute limitations in the cloud.” Read more…

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its intention to make Arm a full citizen in the processing arch Read more…

By Tiffany Trader

Summit Achieves 445 Petaflops on New HPL-AI Benchmark

June 19, 2019

Summit -- the world's the top-ranking supercomputer -- has been used to test-drive a new AI-targeted Linpack benchmark, called HPL-AI. Traditionally, superco Read more…

By Oliver Peckham

By the Numbers: For the HPC Industry, These Are the Good Old Days

June 18, 2019

For technology vendors in HPC and HPC-related markets driven by increased demand for AI, enterprise and exascale solutions, this is the best of times – with better times likely in the offing. HPC analyst firm Hyperion Research took the occasion of its semi-annual HPC market update breakfast today in Frankfurt... Read more…

By Doug Black

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Jack Wells Joins OpenACC; Arm Support Coming

June 17, 2019

Perhaps the most significant ISC19 news for OpenACC wasn’t in its official press release yesterday which touted growing user traction and the notable addition Read more…

By John Russell

DDN Launches EXA5 for AI, Big Data, HPC Workloads

June 17, 2019

DDN, for two decades competing at the headwaters of high performance storage, this morning announced an enterprise-oriented end-to-end high performance storage Read more…

By Doug Black

Final Countdown to ISC19: What to See

June 13, 2019

If you're attending the International Supercomputing Conference, taking place in Frankfurt next week (June 16-20), you're either packing, in transit, or are alr Read more…

By Tiffany Trader

The US Global Weather Forecast System Just Got a Major Upgrade

June 13, 2019

The United States’ Global Forecast System (GFS) has received a major upgrade to its modeling capabilities. The new dynamical core that has been added to the G Read more…

By Oliver Peckham

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This