RSC Tornado With 72-core Intel Phi Achieves 1.41 Pflops per Rack

November 24, 2016

SALT LAKE CITY, Utah, Nov. 24  SC Group, the leading developer and system integrator of innovative solutions for high-performance computing (HPC) segment and Data Centers in Russia and CIS demonstrated a new generation of its high performance, scalable and energyefficient RSC Tornado solution with direct liquid cooling based on the 72-cores Intel Xeon Phi 7290, a top-bin model in this processor family, at SC16 international supercomputing conference and exhibition. This new RSC solution has set a new world record of computing density for x86 architecture of 1.41 Pflops per rack increasing a previous record by 17% (another RSC’s solution – RSC PetaStream – had hold the world record of 1.2 Pflops per rack since 2013). RSC Tornado solution based on multicore Intel Xeon Phi 7200 processor family has improved footprint and computing density, high energy efficiency, ease to manage and maintain as well as provides stable operation of computing nodes in “hot water” mode at +63 °С cooling agent temperature at node inputs. This confirms RSC’s leading position in the field of bringing the latest technologies for global supercomputer industry to the market and meeting growing customer demands.

RSC Tornado computing node based on Intel Xeon Phi 7290 multi-core processor, Intel S7200AP server board with two Intel SSD DC S3500 Series M.2 340 GB and one Intel SSD DC P3100 (M.2 NVMe) solid state drives (PCIe interface) has been demonstrated at RSC booth as well as switches and adapters based on Intel Omni-Path Architecture (OPA) and Mellanox EDR InfiniBand high-speed interconnects.

RSC provided the technology sponsorship for German student team from Technical University of Munich (TUM) which was participating again in Student Cluster Competition (SCC) at SC16. The Student Cluster Competition is a real-time, non-stop, 48-hour challenge in which teams need to complete and tune a real-world workload across a series of scientific applications on a cluster from commercially available components and not exceeding a 3120 watt power limit, demonstrate knowledge of system architecture and application performance, and impress HPC industry judges. Russian company supported the German youth team with 8 nodes mobile cluster based on RSC Tornado direct liquid cooled architecture. This computing system provided stable operation of computing nodes in “hot water” mode at +63 °С cooling agent temperature at node inputs and had the following configuration: 72-cores Intel Xeon Phi 7290 processors, Intel S7200AP server boards, Intel SSD DC S3500 Series M.2 340 GB solid-state drives, switch and adapters based on Intel Omni-Path high-speed fabric, highly efficient Micron DDR4-2400 VLP 16-32 GB memory modules.

RSC also demonstrated at SC16 a storage solution utilizing the newest NVMeover-Fabric protocol features. This is an extension to the original NVMe specifications that allows accessing remotely connected NVMe SSDs over RDMA-enabled fabric. Russian company showed at its booth a basic infrastructure of NVMe-over-Fabric Target system with multiple Intel SSD DC P3700 disks and connected via NVMe-overFabric hosts (RSC Tornado nodes based on Intel Xeon Phi 7290 processors) over Intel Omni-Path fabric switch. Such approach allows to address a block devices remotely with “close to local latency” which can be implemented in the I/O Node designs in HPC. To be noted, this is not a replacement to a traditional parallel storage – I/O nodes boost random I/O performance in the most effective way. Such example can be partitioning a SSD into multiple partitions, sharing them to compute nodes when it’s needed for a workload. This can be used as “scratch on demand” option available upon to request without reboot and re-configuration of a compute nodes.

RSC Tornado solution features

New generation of RSC Tornado cluster solution has the following improved characteristics: usage of high-end models of multi-core Intel Xeon Phi 7200 processor family, including the top-bin Intel Xeon Phi 7290 (72-cores) and support of the upcoming Intel Xeon Phi 7250F, Intel Xeon Phi 7290F processors (“F” indicates processor versions with integrated high-speed interconnect Intel OmniPath), Intel S7200AP server boards, the highest physical density with up to 408 computing nodes in a dual-side 42U cabinet (120х120х200 cm), the record level of computing density – 1.41 Pflops (528 Teraflops in a previous generation) in a dual-side 42U cabinet or over 490 Teraflops/m3, the power density with up to 200 kW per rack allows, thanks to reducing of a system power consumption, to increase an energy efficiency by 3 times, increased RAM volume usage per rack by 5 times from 16.5 TB to 76.5 TB (up to 192 GB RAM DDR4-2400 RAM and 16 GB MCDRAM per node), simultaneous use of up to 2x SSD SATA drives and one PCIe SSD in M.2 form factor, such as Intel SSD DC S3500 series and Intel SSD DC P3100 (M.2 NVMe), improved energy efficiency – provides necessary conditions for stable operation of computing nodes in “hot water” mode at +63 °С temperature at node input enabling system free-cooling operation in 24x7x365 mode with outstanding PUE of 1.05 and even less, a new power supply module in computing node form factor providing efficient transformation of 220V AC to 400V DC (with 96% efficiency) and supporting parallel operation on common bus with reservation scheme from N+1 to N+N, updated design of computing cabinet with support of new high speed inter-node communication technologies including Intel Omni-Path and Mellanox EDR InfiniBand, support of flexible colling system configurations with redundancy of both single hydraulic regulation nodes and the entire system, any RSC Tornado node is serviceable separately without stopping any other node. All node components (memory, disks, high-speed interconnect adapters, power and management subsystems) are easily accessible for simple replacement or re-configuration of these components directly at the customer’s site.

RSC Tornado cluster solution can also be implemented with Intel Xeon E5- 2600 v4 server processor family, including high-end model Intel Xeon E5-2699A v4 just has been introduced at SC16 (22 cores, 2.40 GHz, 55 MB L3 cache) and providing a high computing density – 258.5 Teraflops in a standard 42U (80x80x200 cm) cabinet.

Innovative management and monitoring system of RSC solutions for high performance computing also provides high availability, resistance to failures and ease of use. It can be used to manage single nodes and the entire solution, including infrastructure components. All elements of the system (computing nodes, power supplies, hydraulic regulation modules, etc.) have an integrated management module providing broad capabilities for detailed telemetry and flexible management. Cabinet design supports replacement of computing nodes, power supplies and hydraulic regulation modules (with redundancy) in hot-swap mode without interruption of system operation. Most components of the system (such as computing nodes, power supplies, network and infrastructure components, etc.) are software-defined, and this significantly simplifies and speeds up initial deployment, maintenance and future upgrades of the system. Liquid cooling of all components ensures their longevity.

Latest innovative approaches in new generation of RSC Tornado cluster solution enabled reduction of infrastructure costs within the scope of computing system development and provided capabilities for more flexible upgrades of single nodes and the entire system.

Therefore, RSC solutions for high-performance computing keep setting de facto high industry standards of physical and computing density, energy efficiency, reliability, availability and manageability. Russian customers use solutions based on RSC Tornado cluster architecture with liquid cooling developed by RSC Group specialists in production environments for over six years. These solutions are installed and actively used for modeling and calculation of a broad range of scientific, research and industrial tasks by the St. Petersburg Polytechnic University named after Peter the Great (SPbPU), Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS), South Ural State University (SUSU), Moscow Physics and Technology Institute (MIPT), Russian Weather Forecast Agency (Roshydromet) and other customers from different vertical industries.

About RSC Group

RSC group is the leading developer and system integrator of turnkey new generation solutions for high performance computing (HPC) segment and data centers in Russia and CIS based on Intel architectures, innovative liquid cooling technologies and a number of its own know-hows. RSC has the potential to create the most energy efficient solutions with record-breaking power usage effectiveness (PUE), the highest computing density in the industry with standard x86-based processors, to use fully “green” design, provide the highest solution reliability, noise-free operation of computing modules, 100% compatibility and guaranteed scalability with unmatched low cost of ownership and low power consumption. RSC specialists also have the experience of developing and implementing an integrated software stack of solutions to improve work efficiency and application of supercomputer systems from system software to vertically oriented platforms based on cloud computing technologies.

RSC participates in Intel Technology Provider Program at Platinum level and Intel Fabric Builders Program has been recognized as Intel HPC Data Center Specialist. Performance and scalability of solutions based on RSC PetaStream and RSC Tornado architectures are Intel Cluster Ready certified. For more information see company website www.rscgroup.ru.


Source: RSC Group

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Help Wanted: QED-C Survey Spotlights Skills Sought by Quantum Industry

September 28, 2021

Developing an adequate workforce for the young but fast-growing quantum information sciences industry is seen as a critical element for success. Just what that means in terms of skillsets and positions is becoming cleare Read more…

Pittsburgh Supercomputer Powers Machine Learning Analysis of Rare East Asian Stamps

September 27, 2021

Setting aside the relatively recent rise of electronic signatures, personalized stamps have been a popular form of identification for formal documents in East Asia. These identifiers – easily forged, but culturally ubi Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, now is perhaps a good time to review how valuable (or not) Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to increase even as the size of the silicon on which components a Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to in Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire