RSC Tornado With 72-core Intel Phi Achieves 1.41 Pflops per Rack

November 24, 2016

SALT LAKE CITY, Utah, Nov. 24  SC Group, the leading developer and system integrator of innovative solutions for high-performance computing (HPC) segment and Data Centers in Russia and CIS demonstrated a new generation of its high performance, scalable and energyefficient RSC Tornado solution with direct liquid cooling based on the 72-cores Intel Xeon Phi 7290, a top-bin model in this processor family, at SC16 international supercomputing conference and exhibition. This new RSC solution has set a new world record of computing density for x86 architecture of 1.41 Pflops per rack increasing a previous record by 17% (another RSC’s solution – RSC PetaStream – had hold the world record of 1.2 Pflops per rack since 2013). RSC Tornado solution based on multicore Intel Xeon Phi 7200 processor family has improved footprint and computing density, high energy efficiency, ease to manage and maintain as well as provides stable operation of computing nodes in “hot water” mode at +63 °С cooling agent temperature at node inputs. This confirms RSC’s leading position in the field of bringing the latest technologies for global supercomputer industry to the market and meeting growing customer demands.

RSC Tornado computing node based on Intel Xeon Phi 7290 multi-core processor, Intel S7200AP server board with two Intel SSD DC S3500 Series M.2 340 GB and one Intel SSD DC P3100 (M.2 NVMe) solid state drives (PCIe interface) has been demonstrated at RSC booth as well as switches and adapters based on Intel Omni-Path Architecture (OPA) and Mellanox EDR InfiniBand high-speed interconnects.

RSC provided the technology sponsorship for German student team from Technical University of Munich (TUM) which was participating again in Student Cluster Competition (SCC) at SC16. The Student Cluster Competition is a real-time, non-stop, 48-hour challenge in which teams need to complete and tune a real-world workload across a series of scientific applications on a cluster from commercially available components and not exceeding a 3120 watt power limit, demonstrate knowledge of system architecture and application performance, and impress HPC industry judges. Russian company supported the German youth team with 8 nodes mobile cluster based on RSC Tornado direct liquid cooled architecture. This computing system provided stable operation of computing nodes in “hot water” mode at +63 °С cooling agent temperature at node inputs and had the following configuration: 72-cores Intel Xeon Phi 7290 processors, Intel S7200AP server boards, Intel SSD DC S3500 Series M.2 340 GB solid-state drives, switch and adapters based on Intel Omni-Path high-speed fabric, highly efficient Micron DDR4-2400 VLP 16-32 GB memory modules.

RSC also demonstrated at SC16 a storage solution utilizing the newest NVMeover-Fabric protocol features. This is an extension to the original NVMe specifications that allows accessing remotely connected NVMe SSDs over RDMA-enabled fabric. Russian company showed at its booth a basic infrastructure of NVMe-over-Fabric Target system with multiple Intel SSD DC P3700 disks and connected via NVMe-overFabric hosts (RSC Tornado nodes based on Intel Xeon Phi 7290 processors) over Intel Omni-Path fabric switch. Such approach allows to address a block devices remotely with “close to local latency” which can be implemented in the I/O Node designs in HPC. To be noted, this is not a replacement to a traditional parallel storage – I/O nodes boost random I/O performance in the most effective way. Such example can be partitioning a SSD into multiple partitions, sharing them to compute nodes when it’s needed for a workload. This can be used as “scratch on demand” option available upon to request without reboot and re-configuration of a compute nodes.

RSC Tornado solution features

New generation of RSC Tornado cluster solution has the following improved characteristics: usage of high-end models of multi-core Intel Xeon Phi 7200 processor family, including the top-bin Intel Xeon Phi 7290 (72-cores) and support of the upcoming Intel Xeon Phi 7250F, Intel Xeon Phi 7290F processors (“F” indicates processor versions with integrated high-speed interconnect Intel OmniPath), Intel S7200AP server boards, the highest physical density with up to 408 computing nodes in a dual-side 42U cabinet (120х120х200 cm), the record level of computing density – 1.41 Pflops (528 Teraflops in a previous generation) in a dual-side 42U cabinet or over 490 Teraflops/m3, the power density with up to 200 kW per rack allows, thanks to reducing of a system power consumption, to increase an energy efficiency by 3 times, increased RAM volume usage per rack by 5 times from 16.5 TB to 76.5 TB (up to 192 GB RAM DDR4-2400 RAM and 16 GB MCDRAM per node), simultaneous use of up to 2x SSD SATA drives and one PCIe SSD in M.2 form factor, such as Intel SSD DC S3500 series and Intel SSD DC P3100 (M.2 NVMe), improved energy efficiency – provides necessary conditions for stable operation of computing nodes in “hot water” mode at +63 °С temperature at node input enabling system free-cooling operation in 24x7x365 mode with outstanding PUE of 1.05 and even less, a new power supply module in computing node form factor providing efficient transformation of 220V AC to 400V DC (with 96% efficiency) and supporting parallel operation on common bus with reservation scheme from N+1 to N+N, updated design of computing cabinet with support of new high speed inter-node communication technologies including Intel Omni-Path and Mellanox EDR InfiniBand, support of flexible colling system configurations with redundancy of both single hydraulic regulation nodes and the entire system, any RSC Tornado node is serviceable separately without stopping any other node. All node components (memory, disks, high-speed interconnect adapters, power and management subsystems) are easily accessible for simple replacement or re-configuration of these components directly at the customer’s site.

RSC Tornado cluster solution can also be implemented with Intel Xeon E5- 2600 v4 server processor family, including high-end model Intel Xeon E5-2699A v4 just has been introduced at SC16 (22 cores, 2.40 GHz, 55 MB L3 cache) and providing a high computing density – 258.5 Teraflops in a standard 42U (80x80x200 cm) cabinet.

Innovative management and monitoring system of RSC solutions for high performance computing also provides high availability, resistance to failures and ease of use. It can be used to manage single nodes and the entire solution, including infrastructure components. All elements of the system (computing nodes, power supplies, hydraulic regulation modules, etc.) have an integrated management module providing broad capabilities for detailed telemetry and flexible management. Cabinet design supports replacement of computing nodes, power supplies and hydraulic regulation modules (with redundancy) in hot-swap mode without interruption of system operation. Most components of the system (such as computing nodes, power supplies, network and infrastructure components, etc.) are software-defined, and this significantly simplifies and speeds up initial deployment, maintenance and future upgrades of the system. Liquid cooling of all components ensures their longevity.

Latest innovative approaches in new generation of RSC Tornado cluster solution enabled reduction of infrastructure costs within the scope of computing system development and provided capabilities for more flexible upgrades of single nodes and the entire system.

Therefore, RSC solutions for high-performance computing keep setting de facto high industry standards of physical and computing density, energy efficiency, reliability, availability and manageability. Russian customers use solutions based on RSC Tornado cluster architecture with liquid cooling developed by RSC Group specialists in production environments for over six years. These solutions are installed and actively used for modeling and calculation of a broad range of scientific, research and industrial tasks by the St. Petersburg Polytechnic University named after Peter the Great (SPbPU), Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS), South Ural State University (SUSU), Moscow Physics and Technology Institute (MIPT), Russian Weather Forecast Agency (Roshydromet) and other customers from different vertical industries.

About RSC Group

RSC group is the leading developer and system integrator of turnkey new generation solutions for high performance computing (HPC) segment and data centers in Russia and CIS based on Intel architectures, innovative liquid cooling technologies and a number of its own know-hows. RSC has the potential to create the most energy efficient solutions with record-breaking power usage effectiveness (PUE), the highest computing density in the industry with standard x86-based processors, to use fully “green” design, provide the highest solution reliability, noise-free operation of computing modules, 100% compatibility and guaranteed scalability with unmatched low cost of ownership and low power consumption. RSC specialists also have the experience of developing and implementing an integrated software stack of solutions to improve work efficiency and application of supercomputer systems from system software to vertically oriented platforms based on cloud computing technologies.

RSC participates in Intel Technology Provider Program at Platinum level and Intel Fabric Builders Program has been recognized as Intel HPC Data Center Specialist. Performance and scalability of solutions based on RSC PetaStream and RSC Tornado architectures are Intel Cluster Ready certified. For more information see company website www.rscgroup.ru.


Source: RSC Group

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire