Satellites, Supercomputers and Machine Learning Provide Real-Time Crop Type Data

April 24, 2018

April 24, 2018 — Corn and soybean fields look similar from space—at least they used to. But now, scientists have proven a new technique for distinguishing the two crops using satellite data and the processing power of supercomputers.

“If we want to predict corn or soybean production for Illinois or the entire United States, we have to know where they are being grown,” says Kaiyu Guan, Blue Waters professor at the National Center for Supercomputing Applications (NCSA), assistant professor in the Department of Natural Resources and Environmental Sciences at the University of Illinois, and the principal investigator of the new study.

The advancement, published in Remote Sensing of Environment, is a breakthrough because, previously, national corn and soybean acreages were only made available by the USDA to the public four to six months after harvest. The lag meant policy and economic decisions were based on stale data. But the new technique can distinguish the two major crops with 95 percent accuracy by the end of July for each field—just two or three months after planting and well before harvest.

More timely estimates of crop areas could be used for a variety of monitoring and decision-making applications, including crop insurance, land rental, supply-chain logistics, commodity market future projections, and more.

A set of satellites known as Landsat have been continuously circling the Earth for 40 years, collecting images using sensors that represent different parts of the electromagnetic spectrum. Guan says most previous attempts to differentiate corn and soybean from these images were based on the visible and near-infrared part of the spectrum signal analysis, but his team decided to include something different.

Two supercomputers at NCSA, ROGER and Blue Waters, were used to generate the time-series Landsat data stack. Blue Waters, with its large memory and rich computing resources, was used to build the classification model through intensive machine training and testing. These powerful computing resources at NCSA allowed Guan and his team to determine how the deep learning approach can be used for crop-type classification, and how early into the growing season this method can be applied for optimal accuracy of crop-type classification.

It turns out corn and soybean have different canopy water statuses, which cannot be captured by visible and near-infrared bands but only shortwave-infrared band. To validate the technique, the team used short-wave infrared (SWIR) data and other spectral data from three Landsat satellites over a 15-year period, and consistently picked up this leaf water status signal.

“The SWIR band is more sensitive to water content inside the leaf. That signal can’t be captured by traditional RGB (visible) light or near-infrared bands, so the SWIR is extremely useful to differentiate corn and soybean,” Guan concludes.

The researchers used a type of machine-learning, known as a deep neural network, to analyze the data.

“Deep learning approaches have just started to be applied for agricultural applications, and we foresee a huge potential of such technologies for future innovations in this area,” says Jian Peng, a NCSA Faculty Fellowand assistant professor in the Department of Computer Science at University of Illinois, and a co-author and co-principal investigator of the new study.

The team focused their analysis within Champaign County, Illinois, as a proof-of-concept. Even though it was a relatively small area, analyzing 15 years of satellite data at a 30-meter resolution still required a supercomputer to process tens of terabytes of data.

“It’s a huge amount of satellite data. We needed the Blue Waters and ROGER supercomputers at the NCSA to handle the process and extract useful information,” Guan says. “Technology wise, being able to handle such a huge amount of data and apply an advanced machine-learning algorithm was a big challenge before, but now we have supercomputers and the skills to handle the dataset.”

The team is now working on expanding the study area to the entire Corn Belt, and investigating further applications of the data, including yield and other quality estimates.

The article, “A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach,” is published in Remote Sensing of Environment [DOI: 10.1016/j.rse.2018.02.045]. Additional authors include Christopher Seifert, Brian Wardlow, and Zhan Li. The work was supported by NCSA, NASA, and the National Science Foundation.

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50® for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

About the Blue Waters Project

The Blue Waters petascale supercomputer is one of the most powerful supercomputers in the world, and is the fastest sustained supercomputer on a university campus. Blue Waters uses hundreds of thousands of computational cores to achieve peak performance of more than 13 quadrillion calculations per second. Blue Waters has more memory and faster data storage than any other open system in the world. Scientists and engineers across the country use the computing and data power of Blue Waters to tackle a wide range of challenges. Recent advances that were not possible without these resources include computationally designing the first set of antibody prototypes to detect the Ebola virus, simulating the HIV capsid, visualizing the formation of the first galaxies and exploding stars, and understanding how the layout of a city can impact supercell thunderstorms.


Source: NCSA

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UT Dallas Grows HPC Storage Footprint for Animation and Game Development

October 28, 2020

Computer-generated animation and video game development are extraordinarily computationally intensive fields, with studios often requiring large server farms with hundreds of terabytes – or even petabytes – of storag Read more…

By Staff report

Frame by Frame, Supercomputing Reveals the Forms of the Coronavirus

October 27, 2020

From the start of the pandemic, supercomputing research has been targeting one particular protein of the coronavirus: the notorious “S” or “spike” protein, which allows the virus to pry its way into human cells a Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. The acquisition helps AMD keep pace during a time of consolida Read more…

By John Russell

Nvidia-Arm Deal a Boon for RISC-V?

October 26, 2020

The $40 billion blockbuster acquisition deal that will bring chip maker Arm into the Nvidia corporate family could provide a boost for the competing RISC-V architecture. As regulators in the U.S., China and the Europe Read more…

By George Leopold

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a reference collection of open-source HPC software components and bes Read more…

By John Russell

AWS Solution Channel

Rapid Chip Design in the Cloud

Time-to-market and engineering efficiency are the most critical and expensive metrics for a chip design company. With this in mind, the team at Annapurna Labs selected Altair AcceleratorRead more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

NASA Uses Supercomputing to Measure Carbon in the World’s Trees

October 22, 2020

Trees constitute one of the world’s most important carbon sinks, pulling enormous amounts of carbon dioxide from the atmosphere and storing the carbon in their trunks and the surrounding soil. Measuring this carbon sto Read more…

By Oliver Peckham

AMD Reports Record Revenue and $35B Deal to Buy Xilinx

October 27, 2020

AMD this morning reported record quarterly revenue of $2.8 billion and a finalized deal to buy FPGA-maker Xilinx for $35 billion in an all-stock transaction. Th Read more…

By John Russell

OpenHPC Progress Report – v2.0, More Recipes, Cloud and Arm Support, Says Schulz

October 26, 2020

Launched in late 2015 and transitioned to a Linux Foundation Project in 2016, OpenHPC has marched quietly but steadily forward. Its goal “to provide a referen Read more…

By John Russell

Nvidia Dominates (Again) Latest MLPerf Inference Results

October 22, 2020

The two-year-old AI benchmarking group MLPerf.org released its second set of inferencing results yesterday and again, as in the most recent MLPerf training resu Read more…

By John Russell

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

HPE to Build Australia’s Most Powerful Supercomputer for Pawsey

October 20, 2020

The Pawsey Supercomputing Centre in Perth, Western Australia, has had a busy year. Pawsey typically spends much of its time looking to the stars, working with a Read more…

By Oliver Peckham

DDN-Tintri Showcases Technology Integration with Two New Products

October 20, 2020

DDN, a long-time leader in HPC storage, announced two new products today and provided more detail around its strategy for integrating DDN HPC technologies with Read more…

By John Russell

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Aurora’s Troubles Move Frontier into Pole Exascale Position

October 1, 2020

Intel’s 7nm node delay has raised questions about the status of the Aurora supercomputer that was scheduled to be stood up at Argonne National Laboratory next year. Aurora was in the running to be the United States’ first exascale supercomputer although it was on a contemporaneous timeline with... Read more…

By Tiffany Trader

Is the Nvidia A100 GPU Performance Worth a Hardware Upgrade?

October 16, 2020

Over the last decade, accelerators have seen an increasing rate of adoption in high-performance computing (HPC) platforms, and in the June 2020 Top500 list, eig Read more…

By Hartwig Anzt, Ahmad Abdelfattah and Jack Dongarra

Leading Solution Providers

Contributors

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Nvidia and EuroHPC Team for Four Supercomputers, Including Massive ‘Leonardo’ System

October 15, 2020

The EuroHPC Joint Undertaking (JU) serves as Europe’s concerted supercomputing play, currently comprising 32 member states and billions of euros in funding. I Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

HPE, AMD and EuroHPC Partner for Pre-Exascale LUMI Supercomputer

October 21, 2020

Not even a week after Nvidia announced that it would be providing hardware for the first four of the eight planned EuroHPC systems, HPE and AMD are announcing a Read more…

By Oliver Peckham

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Oracle Cloud Deepens HPC Embrace with Launch of A100 Instances, Plans for Arm, More 

September 22, 2020

Oracle Cloud Infrastructure (OCI) continued its steady ramp-up of HPC capabilities today with a flurry of announcements. Topping the list is general availabilit Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This