SC16 Announces Best Paper Nominees

September 21, 2016

Sept. 21 — Out of 442 technical papers submitted to SC16, only 81 were accepted and of these, seven have been nominated for the conference’s Best Paper Award. One of the best paper candidates also is a finalist for the ACM Gordon Bell Prize, which will be presented at SC16.

Overall, the conference had an 18.3 percent acceptance rate for papers, which covered nine different focus areas. The areas are Applications; Algorithms; Architectures and Networks; Clouds and Distributed Computing; Data Analytics, Visualization and Storage; Performance Measurement, Modeling and Tools; Programming Systems; State of the Practice; and System Software.

“Within each of the major topical areas, individual members of the program committee nominate the submissions that they consider to have the strongest technical innovation and potential for impact,” says Rich Vuduc of Georgia Tech, SC16 Technical Papers Vice Chair. “The committee then discusses these candidates in order to identify up to one best paper and one best student paper within the area to be a finalist. A separate committee will select winners during SC16 in November.”

The following are this year’s Best Paper Award nominees:

Toward Green Aviation with Python at Petascale (also a Gordon Bell Prize Finalist), Peter Vincent, Freddie Witherden, Brian Vermeire, Jin Seok Park, and Arvind Iyer, all of Imperial College London.

Accurate simulation of unsteady turbulent flow is critical for improved design of ‘greener’ aircraft that are quieter and more fuel-efficient. We demonstrate application of PyFR, a Python based computational fluid dynamics solver, to petascale simulation of such flow problems. Rationale behind algorithmic choices, which offer increased levels of accuracy and enable sustained computation at up to 58 percent of peak DP-FLOP/s on unstructured grids, will be discussed in the context of modern hardware.

A range of software innovations also will be detailed, including use of runtime code generation, which enables PyFR to efficiently target multiple platforms, including heterogeneous systems, via a single implementation. Finally, results will be presented from a full-scale simulation of flow over a low-pressure turbine blade cascade, along with weak/strong scaling statistics from the Piz Daint and Titan supercomputers, and performance data demonstrating sustained computation at up to 13.7 DP-PFLOP/s.

The Mont-Blanc Prototype: An Alternative Approach for HPC Systems, Nikola Rajovic, Barcelona Supercomputing Center; Alejandro Rico, ARM; Filippo Mantovani, Barcelona Supercomputing Center; Daniel Ruiz, Barcelona Supercomputing Center; Josep Oriol Vilarrubi, Barcelona Supercomputing Center; Constantino Gomez, Barcelona Supercomputing Center; Luna Backes, Barcelona Supercomputing Center; Diego Nieto, Barcelona Supercomputing Center; Harald Servat, Barcelona Supercomputing Center; Xavier Martorell, Barcelona Supercomputing Center; Jesus Labarta, Barcelona Supercomputing Center; Eduard Ayguade, Barcelona Supercomputing Center; Chris Adeniyi-Jones, ARM; Said Derradji, Bull; Herve Gloaguen, Bull; Piero Lanucara, CINECA; Nico Sanna, CINECA; Jean-François Méhaut, Grenoble Alpes University; Kevin Pouget, Grenoble Alpes University; Brice Videau, Grenoble Alpes University; Eric Boyer, GENCI; Momme Allalen, Leibniz Supercomputing Centre; Axel Auweter, Leibniz Supercomputing Centre; David Brayford, Leibniz Supercomputing Centre; Daniele Tafani, Leibniz Supercomputing Centre; Volker Weinberg, Leibniz Supercomputing Centre; Dirk Brömmel, Forschungszentrum Juelich; Rene Halver, Forschungszentrum Juelich; Jan H. Meinke, Forschungszentrum Juelich; Ramon Beivide, University of Cantabria; Mariano Benito, University of Cantabria; Enrique Vallejo, University of Cantabria; Mateo Valero, Barcelona Supercomputing Center; Alex Ramirez, NVIDIA Corporation.

HPC systems are usually designed using the state-of-the-art devices. On the otherhand, the much larger embedded and mobile market allows for rapid development of IP blocks and provides more flexibility in designing an application-specific SoC, in turn, providing the possibility in balancing performance, energy-efficiency and cost.

We advocate for alternative HPC systems to be built from such commodity IP blocks currently used in embedded and mobile SoCs. As a first demonstration of such an approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and NICs from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling, using standard integration solutions.

In this paper, we present the system’s architecture and evaluate both performance and energy-efficiency. Further, we compare the system’s abilities against a production-level supercomputer. Finally, we discuss parallel scalability and estimate the maximum parallel scalability point of this approach.

Automating Wavefront Parallelization for Sparse Matrix Codes, Anand  Venkat, University of Utah; Mahdi Soltan Mohammadi, University of Arizona; Jongsoo Park, Intel Corporation; Hongbo Rong, Intel Corporation; Rajkishore Barik, Intel Corporation; Michelle Mills Strout, University of Arizona; Mary Hall, University of Utah.

This paper presents a compiler and runtime framework for parallelizing sparse matrix computations that have loop-carried dependences. Our approach automatically generates a runtime inspector to collect data dependence information and achieves wavefront parallelization of the computation, where iterations within a wavefront execute in parallel, and synchronization is required across wavefronts. A key contribution of this paper involves dependence simplification, which reduces the time and space overhead of the inspector.

This is implemented within a polyhedral compiler framework, extended for sparse matrix codes. Results demonstrate the feasibility of using automatically-generated inspectors and executors to optimize ILU factorization and symmetric Gauss-Seidel relaxations, which are part of the Preconditioned Conjugate Gradient (PCG) computation. Our implementation achieves a median speedup of 2.97x and 2.82x over the reference sequential PCG implementation and PCG parallelized with the Intel Math Kernel Library (MKL) respectively and are within 7 percent of the median performance of manually tuned code.

Failure Detection and Propagation in HPC Systems, George Bosilca, University of Tennessee; Aurelien Bouteiller, University of Tennessee; Amina Guermouche University of Tennessee; Thomas Herault, University of Tennessee; Yves Robert, ENS Lyon; Pierre Sens, LIP6 Paris; Jack Dongarra, University of Tennessee.

Building an infrastructure for exascale applications requires, in addition to many other key components, a stable and efficient failure detector. This paper describes the design and evaluation of a robust failure detector, able to maintain and distribute the correct list of alive resources within proven and scalable bounds.

The detection and distribution of the fault information follow different overlay topologies that together guarantee minimal disturbance to the applications. A virtual observation ring minimizes the overhead by allowing each node to be observed by another single node, providing an unobtrusive behavior.

The propagation stage is using a non-uniform variant of a reliable broadcast over a circulant graph overlay network, and guarantees a logarithmic fault propagation. Extensive simulations, together with experiments on the ORNL Titan supercomputer, show that the algorithm performs extremely well and exhibits all the desired properties of an exascale-ready algorithm.

Performance Modeling of In Situ Rendering, Matthew Larsen, University of Oregon; Cyrus Harrison, Lawrence Livermore National Laboratory; James Kress, University of Oregon; Dave Pugmire, Oak Ridge National Laboratory; Jeremy Meredith, Oak Ridge National Laboratory; Hank Childs, University of Oregon.

With the push to exascale, in situ visualization and analysis will continue to play an important role in HPC. Tightly coupling in situ visualization with simulations constrains resources for both, and these constraints force a complex balance of trade-offs. A performance model that provides an a priori answer for the cost of using an in situ approach for a given task would assist in managing the trade-offs between simulation and visualization resources.

In this work, we present new statistical performance models, based on algorithmic complexity, that accurately predict the run-time cost of a set of representative rendering algorithms, an essential in situ visualization task. To train and validate the models, we conduct a performance study of an MPI+X rendering infrastructure used in situ with three HPC simulation applications. We then explore feasibility issues using the model for selected in situ rendering questions.

An Efficient and Scalable Algorithmic Method for Generating Large-Scale Random Graphs, Maksudul Alam, Virginia Polytechnic Institute and State University; Maleq Khan, Virginia Polytechnic Institute and State University; Anil Vullikanti, Virginia Polytechnic Institute and State University; Madhav Marathe, Virginia Polytechnic Institute and State University.

Many real-world systems are modeled and analyzed using various random network models. For realistic analysis, models must incorporate relevant properties such as degree distribution and clustering coefficient. Many models, such as the Chung-Lu, stochastic Kronecker, stochastic blockmodels (SBM), and block two-level Erdos-Renyi (BTER) models have been devised to capture those properties.

However, the generative algorithms for these models are mostly sequential and take a prohibitively long time. In this paper, we present a novel time and space efficient algorithm for the Chung-Lu model requiring O(m) time and O(Λ) space, where m and Λ are the number of edges and distinct degrees.

We also present a distributed-memory parallel algorithm with P processors requiring O(m/P+Λ+P) time and O(Λ) space. Finally, we extend our algorithms for two other popular models: SBM and BTER. These algorithms are highly scalable. Generating a power-law network with 250 billion edges takes only 12 seconds using 1024 processors.

Daino: A High-Level Framework for Parallel and Efficient AMR on GPUs, Mohamed Wahib Attia, RIKEN; Naoya Maruyama, RIKEN; and Takayuki Aoki, Tokyo Institute of Technology.

Adaptive Mesh Refinement methods reduce computational requirements of problems by increasing resolution for only areas of interest. However, in practice, efficient AMR implementations are difficult considering that the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of GPUs can render efficient AMR to be particularly  challenging in GPU-accelerated supercomputers.

This paper presents a compiler-based high-level framework that can automatically transform serial uniform mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated supercomputers. We also present a method for empirical analysis of a uniform mesh to project an upper-bound on achievable speedup of a GPU-optimized AMR code.

We show experimental results on three production applications. The speedup of code generated by our framework  is comparable to hand-written AMR code while achieving good and weak scaling up to 1000 GPUs.


Source: SC16

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized i Read more…

Nvidia Aims Clara Healthcare at Drug Discovery, Imaging via DGX

April 12, 2021

Nvidia Corp. continues to expand its Clara healthcare platform with the addition of computational drug discovery and medical imaging tools based on its DGX A100 platform, related InfiniBand networking and its AGX develop Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fledged partner to CPUs and GPUs in delivering advanced computi Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” The newly announced SuperPods come just two years after the Read more…

AWS Solution Channel

Volkswagen Passenger Cars Uses NICE DCV for High-Performance 3D Remote Visualization

 

Volkswagen Passenger Cars has been one of the world’s largest car manufacturers for over 70 years. The company delivers more than 6 million automobiles to global customers every year, from 50 production locations on five continents. Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

Nvidia Serves Up Its First Arm Datacenter CPU ‘Grace’ During Kitchen Keynote

April 12, 2021

Today at Nvidia’s annual spring GPU technology conference, held virtually once more due to the ongoing pandemic, the company announced its first ever Arm-based CPU, called Grace in honor of the famous American programmer Grace Hopper. Read more…

Nvidia Debuts BlueField-3 – Its Next DPU with Big Plans for an Expanded Role

April 12, 2021

Nvidia today announced its next generation data processing unit (DPU) – BlueField-3 – adding more substance to its evolving concept of the DPU as a full-fle Read more…

Nvidia’s Newly DPU-Enabled SuperPod Is a Multi-Tenant, Cloud-Native Supercomputer

April 12, 2021

At GTC 2021, Nvidia has announced an upgraded iteration of its DGX SuperPods, calling the new offering “the first cloud-native, multi-tenant supercomputer.” Read more…

Tune in to Watch Nvidia’s GTC21 Keynote with Jensen Huang – Recording Now Available

April 12, 2021

Join HPCwire right here on Monday, April 12, at 8:30 am PT to see the Nvidia GTC21 keynote from Nvidia’s CEO, Jensen Huang, livestreamed in its entirety. Hosted by HPCwire, you can click to join the Huang keynote on our livestream to hear Nvidia’s expected news and... Read more…

The US Places Seven Additional Chinese Supercomputing Entities on Blacklist

April 8, 2021

As tensions between the U.S. and China continue to simmer, the U.S. government today added seven Chinese supercomputing entities to an economic blacklist. The U Read more…

Habana’s AI Silicon Comes to San Diego Supercomputer Center

April 8, 2021

Habana Labs, an Intel-owned AI company, has partnered with server maker Supermicro to provide high-performance, high-efficiency AI computing in the form of new Read more…

Intel Partners Debut Latest Servers Based on the New Intel Gen 3 ‘Ice Lake’ Xeons

April 7, 2021

Fresh from Intel’s launch of the company’s latest third-generation Xeon Scalable “Ice Lake” processors on April 6 (Tuesday), Intel server partners Cisco, Dell EMC, HPE and Lenovo simultaneously unveiled their first server models built around the latest chips. And though arch-rival AMD may... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

Programming the Soon-to-Be World’s Fastest Supercomputer, Frontier

January 5, 2021

What’s it like designing an app for the world’s fastest supercomputer, set to come online in the United States in 2021? The University of Delaware’s Sunita Chandrasekaran is leading an elite international team in just that task. Chandrasekaran, assistant professor of computer and information sciences, recently was named... Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

Microsoft, HPE Bringing AI, Edge, Cloud to Earth Orbit in Preparation for Mars Missions

February 12, 2021

The International Space Station will soon get a delivery of powerful AI, edge and cloud computing tools from HPE and Microsoft Azure to expand technology experi Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire