SC16 Announces Best Paper Nominees

September 21, 2016

Sept. 21 — Out of 442 technical papers submitted to SC16, only 81 were accepted and of these, seven have been nominated for the conference’s Best Paper Award. One of the best paper candidates also is a finalist for the ACM Gordon Bell Prize, which will be presented at SC16.

Overall, the conference had an 18.3 percent acceptance rate for papers, which covered nine different focus areas. The areas are Applications; Algorithms; Architectures and Networks; Clouds and Distributed Computing; Data Analytics, Visualization and Storage; Performance Measurement, Modeling and Tools; Programming Systems; State of the Practice; and System Software.

“Within each of the major topical areas, individual members of the program committee nominate the submissions that they consider to have the strongest technical innovation and potential for impact,” says Rich Vuduc of Georgia Tech, SC16 Technical Papers Vice Chair. “The committee then discusses these candidates in order to identify up to one best paper and one best student paper within the area to be a finalist. A separate committee will select winners during SC16 in November.”

The following are this year’s Best Paper Award nominees:

Toward Green Aviation with Python at Petascale (also a Gordon Bell Prize Finalist), Peter Vincent, Freddie Witherden, Brian Vermeire, Jin Seok Park, and Arvind Iyer, all of Imperial College London.

Accurate simulation of unsteady turbulent flow is critical for improved design of ‘greener’ aircraft that are quieter and more fuel-efficient. We demonstrate application of PyFR, a Python based computational fluid dynamics solver, to petascale simulation of such flow problems. Rationale behind algorithmic choices, which offer increased levels of accuracy and enable sustained computation at up to 58 percent of peak DP-FLOP/s on unstructured grids, will be discussed in the context of modern hardware.

A range of software innovations also will be detailed, including use of runtime code generation, which enables PyFR to efficiently target multiple platforms, including heterogeneous systems, via a single implementation. Finally, results will be presented from a full-scale simulation of flow over a low-pressure turbine blade cascade, along with weak/strong scaling statistics from the Piz Daint and Titan supercomputers, and performance data demonstrating sustained computation at up to 13.7 DP-PFLOP/s.

The Mont-Blanc Prototype: An Alternative Approach for HPC Systems, Nikola Rajovic, Barcelona Supercomputing Center; Alejandro Rico, ARM; Filippo Mantovani, Barcelona Supercomputing Center; Daniel Ruiz, Barcelona Supercomputing Center; Josep Oriol Vilarrubi, Barcelona Supercomputing Center; Constantino Gomez, Barcelona Supercomputing Center; Luna Backes, Barcelona Supercomputing Center; Diego Nieto, Barcelona Supercomputing Center; Harald Servat, Barcelona Supercomputing Center; Xavier Martorell, Barcelona Supercomputing Center; Jesus Labarta, Barcelona Supercomputing Center; Eduard Ayguade, Barcelona Supercomputing Center; Chris Adeniyi-Jones, ARM; Said Derradji, Bull; Herve Gloaguen, Bull; Piero Lanucara, CINECA; Nico Sanna, CINECA; Jean-François Méhaut, Grenoble Alpes University; Kevin Pouget, Grenoble Alpes University; Brice Videau, Grenoble Alpes University; Eric Boyer, GENCI; Momme Allalen, Leibniz Supercomputing Centre; Axel Auweter, Leibniz Supercomputing Centre; David Brayford, Leibniz Supercomputing Centre; Daniele Tafani, Leibniz Supercomputing Centre; Volker Weinberg, Leibniz Supercomputing Centre; Dirk Brömmel, Forschungszentrum Juelich; Rene Halver, Forschungszentrum Juelich; Jan H. Meinke, Forschungszentrum Juelich; Ramon Beivide, University of Cantabria; Mariano Benito, University of Cantabria; Enrique Vallejo, University of Cantabria; Mateo Valero, Barcelona Supercomputing Center; Alex Ramirez, NVIDIA Corporation.

HPC systems are usually designed using the state-of-the-art devices. On the otherhand, the much larger embedded and mobile market allows for rapid development of IP blocks and provides more flexibility in designing an application-specific SoC, in turn, providing the possibility in balancing performance, energy-efficiency and cost.

We advocate for alternative HPC systems to be built from such commodity IP blocks currently used in embedded and mobile SoCs. As a first demonstration of such an approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and NICs from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling, using standard integration solutions.

In this paper, we present the system’s architecture and evaluate both performance and energy-efficiency. Further, we compare the system’s abilities against a production-level supercomputer. Finally, we discuss parallel scalability and estimate the maximum parallel scalability point of this approach.

Automating Wavefront Parallelization for Sparse Matrix Codes, Anand  Venkat, University of Utah; Mahdi Soltan Mohammadi, University of Arizona; Jongsoo Park, Intel Corporation; Hongbo Rong, Intel Corporation; Rajkishore Barik, Intel Corporation; Michelle Mills Strout, University of Arizona; Mary Hall, University of Utah.

This paper presents a compiler and runtime framework for parallelizing sparse matrix computations that have loop-carried dependences. Our approach automatically generates a runtime inspector to collect data dependence information and achieves wavefront parallelization of the computation, where iterations within a wavefront execute in parallel, and synchronization is required across wavefronts. A key contribution of this paper involves dependence simplification, which reduces the time and space overhead of the inspector.

This is implemented within a polyhedral compiler framework, extended for sparse matrix codes. Results demonstrate the feasibility of using automatically-generated inspectors and executors to optimize ILU factorization and symmetric Gauss-Seidel relaxations, which are part of the Preconditioned Conjugate Gradient (PCG) computation. Our implementation achieves a median speedup of 2.97x and 2.82x over the reference sequential PCG implementation and PCG parallelized with the Intel Math Kernel Library (MKL) respectively and are within 7 percent of the median performance of manually tuned code.

Failure Detection and Propagation in HPC Systems, George Bosilca, University of Tennessee; Aurelien Bouteiller, University of Tennessee; Amina Guermouche University of Tennessee; Thomas Herault, University of Tennessee; Yves Robert, ENS Lyon; Pierre Sens, LIP6 Paris; Jack Dongarra, University of Tennessee.

Building an infrastructure for exascale applications requires, in addition to many other key components, a stable and efficient failure detector. This paper describes the design and evaluation of a robust failure detector, able to maintain and distribute the correct list of alive resources within proven and scalable bounds.

The detection and distribution of the fault information follow different overlay topologies that together guarantee minimal disturbance to the applications. A virtual observation ring minimizes the overhead by allowing each node to be observed by another single node, providing an unobtrusive behavior.

The propagation stage is using a non-uniform variant of a reliable broadcast over a circulant graph overlay network, and guarantees a logarithmic fault propagation. Extensive simulations, together with experiments on the ORNL Titan supercomputer, show that the algorithm performs extremely well and exhibits all the desired properties of an exascale-ready algorithm.

Performance Modeling of In Situ Rendering, Matthew Larsen, University of Oregon; Cyrus Harrison, Lawrence Livermore National Laboratory; James Kress, University of Oregon; Dave Pugmire, Oak Ridge National Laboratory; Jeremy Meredith, Oak Ridge National Laboratory; Hank Childs, University of Oregon.

With the push to exascale, in situ visualization and analysis will continue to play an important role in HPC. Tightly coupling in situ visualization with simulations constrains resources for both, and these constraints force a complex balance of trade-offs. A performance model that provides an a priori answer for the cost of using an in situ approach for a given task would assist in managing the trade-offs between simulation and visualization resources.

In this work, we present new statistical performance models, based on algorithmic complexity, that accurately predict the run-time cost of a set of representative rendering algorithms, an essential in situ visualization task. To train and validate the models, we conduct a performance study of an MPI+X rendering infrastructure used in situ with three HPC simulation applications. We then explore feasibility issues using the model for selected in situ rendering questions.

An Efficient and Scalable Algorithmic Method for Generating Large-Scale Random Graphs, Maksudul Alam, Virginia Polytechnic Institute and State University; Maleq Khan, Virginia Polytechnic Institute and State University; Anil Vullikanti, Virginia Polytechnic Institute and State University; Madhav Marathe, Virginia Polytechnic Institute and State University.

Many real-world systems are modeled and analyzed using various random network models. For realistic analysis, models must incorporate relevant properties such as degree distribution and clustering coefficient. Many models, such as the Chung-Lu, stochastic Kronecker, stochastic blockmodels (SBM), and block two-level Erdos-Renyi (BTER) models have been devised to capture those properties.

However, the generative algorithms for these models are mostly sequential and take a prohibitively long time. In this paper, we present a novel time and space efficient algorithm for the Chung-Lu model requiring O(m) time and O(Λ) space, where m and Λ are the number of edges and distinct degrees.

We also present a distributed-memory parallel algorithm with P processors requiring O(m/P+Λ+P) time and O(Λ) space. Finally, we extend our algorithms for two other popular models: SBM and BTER. These algorithms are highly scalable. Generating a power-law network with 250 billion edges takes only 12 seconds using 1024 processors.

Daino: A High-Level Framework for Parallel and Efficient AMR on GPUs, Mohamed Wahib Attia, RIKEN; Naoya Maruyama, RIKEN; and Takayuki Aoki, Tokyo Institute of Technology.

Adaptive Mesh Refinement methods reduce computational requirements of problems by increasing resolution for only areas of interest. However, in practice, efficient AMR implementations are difficult considering that the mesh hierarchy management must be optimized for the underlying hardware. Architecture complexity of GPUs can render efficient AMR to be particularly  challenging in GPU-accelerated supercomputers.

This paper presents a compiler-based high-level framework that can automatically transform serial uniform mesh code annotated by the user into parallel adaptive mesh code optimized for GPU-accelerated supercomputers. We also present a method for empirical analysis of a uniform mesh to project an upper-bound on achievable speedup of a GPU-optimized AMR code.

We show experimental results on three production applications. The speedup of code generated by our framework  is comparable to hand-written AMR code while achieving good and weak scaling up to 1000 GPUs.


Source: SC16

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Help Wanted: QED-C Survey Spotlights Skills Sought by Quantum Industry

September 28, 2021

Developing an adequate workforce for the young but fast-growing quantum information sciences industry is seen as a critical element for success. Just what that means in terms of skillsets and positions is becoming cleare Read more…

Pittsburgh Supercomputer Powers Machine Learning Analysis of Rare East Asian Stamps

September 27, 2021

Setting aside the relatively recent rise of electronic signatures, personalized stamps have been a popular form of identification for formal documents in East Asia. These identifiers – easily forged, but culturally ubi Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, now is perhaps a good time to review how valuable (or not) Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to increase even as the size of the silicon on which components a Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institute of Science and Engineering (NAISE), at the most recent HPC Read more…

AWS Solution Channel

Introducing AWS ParallelCluster 3

Running HPC workloads, like computational fluid dynamics (CFD), molecular dynamics, or weather forecasting typically involves a lot of moving parts. You need a hundreds or thousands of compute cores, a job scheduler for keeping them fed, a shared file system that’s tuned for throughput or IOPS (or both), loads of libraries, a fast network, and a head node to make sense of all this. Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Purdue Researchers Peer into the ‘Fog of the Machine Learning Accelerator War’

September 27, 2021

Making sense of ML performance and benchmark data is an ongoing challenge. In light of last week’s release of the most recent MLPerf (v1.1) inference results, Read more…

Quantum Monte Carlo at Exascale Could Be Key to Finding New Semiconductor Materials

September 27, 2021

Researchers are urgently trying to identify possible materials to replace silicon-based semiconductors. The processing power in modern computers continues to in Read more…

The Case for an Edge-Driven Future for Supercomputing

September 24, 2021

“Exascale only becomes valuable when it’s creating and using data that we care about,” said Pete Beckman, co-director of the Northwestern-Argonne Institut Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Qubit Stream: Monte Carlo Advance, Infosys Joins the Fray, D-Wave Meeting Plans, and More

September 23, 2021

It seems the stream of quantum computing reports never ceases. This week – IonQ and Goldman Sachs tackle Monte Carlo on quantum hardware, Cambridge Quantum pu Read more…

Asetek Announces It Is Exiting HPC to Protect Future Profitability

September 22, 2021

Liquid cooling specialist Asetek, well-known in HPC circles for its direct-to-chip cooling technology that is inside some of the fastest supercomputers in the world, announced today that it is exiting the HPC space amid multiple supply chain issues related to the pandemic. Although pandemic supply chain... Read more…

TACC Supercomputer Delves Into Protein Interactions

September 22, 2021

Adenosine triphosphate (ATP) is a compound used to funnel energy from mitochondria to other parts of the cell, enabling energy-driven functions like muscle contractions. For ATP to flow, though, the interaction between the hexokinase-II (HKII) enzyme and the proteins found in a specific channel on the mitochondria’s outer membrane. Now, simulations conducted on supercomputers at the Texas Advanced Computing Center (TACC) have simulated... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Leading Solution Providers

Contributors

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire