SC17 Video: How Supercomputing Helps Explain the Ocean’s Role in Weather and Climate

October 19, 2017

DENVER, Oct. 19, 2017 — Using the power of today’s high performance computers, Earth scientists are working hand in hand with visualization experts to bring exquisitely detailed views of Earth’s oceans into sharper focus than ever before.

A video just released by SC17 conference relates how scientists are zooming in on one of the highest-resolution computer simulations in the world to explore never-before-seen features of the global ocean eddies and circulation.

“The ocean is what makes life possible on this beautiful planet,” said Dr. Dimitris Menemenlis, Research Scientist in the Earth Science Section at NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif. “We should therefore try to understand and study and know how it works.”

Menemenlis has been doing just that—collaborating with other experts for two decades to continually improve data assimilation and numerical modeling techniques in order to achieve increasingly accurate descriptions of the global ocean circulation.  Numerical global ocean simulations today have horizontal grids cells spaced by 1 to 2 kilometers, compared to 25 to 100 kilometers 20 years ago.

“We are working with people at NASA centers, universities, and labs around the world who are looking for answers to important questions such as how ocean heat interacts with land and sea ice, how ice melt could raise sea levels and affect coastal areas, how carbon in the atmosphere is changing seawater chemistry, and how currents impact the ocean carbon cycle,” stated Menemenlis.

The new simulation accurately represents temperature and salinity variations in the ocean caused by a wide range of processes, from mesoscale eddies to internal tides. This simulation gives scientists a better picture of how ocean currents carry nutrients, carbon dioxide, and other chemicals to various locations around the world. These improvements are made possible by evolving supercomputer capabilities, satellite and other observational methods, and visualization methods.”

In particular, visualization and data analysis experts in the NASA Advanced Supercomputing (NAS) Division at NASA’s Ames Research Center in Silicon Valley have developed an interactive visualization technique that allows scientists to explore the entire global ocean on NAS’s 128-screen hyperwall and then zoom in on specific regions in near-real-time. Menemenlis says the new capability helps to quickly identify interesting ocean phenomena in the numerical simulation, that would otherwise be difficult to discover.

Scientists making satellite and in situ ocean observations can use the results from the simulation to better understand the observations and what they tell us about the ocean’s role in our planet’s weather and climate. The ultimate goal is to create a global, full-depth, time-evolving description of ocean circulation that is consistent with the model equations as well as with all the available observations.

“The ocean is vast and there are still a lot of unknowns. We still can’t represent all the conditions and are pushing the boundaries of current supercomputer power,” said Menemenlis. “This is an exciting time to be an oceanographer who can use satellite observations and numerical simulations to push our understanding of ocean circulation forward.”


Source: SC17

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This