STFC Machine Learning Group Deploys Elastic NVMe Storage to Power GPU Servers

November 18, 2019

SAN JOSE, Calif., November 18, 2019 – Excelero, a disruptor in software‐defined NVMe storage, announced that the Science and Technology Facilities Council (STFC) has deployed a new high performance computing (HPC) architecture to support computationally intensive analysis including machine learning and AI‐based workloads using the NVMesh elastic NVMe block storage solution. The deployment, done in partnership with Boston Limited, a provider of high performance, mission‐critical server and storage solutions, is enabling researchers from STFC and the Alan Turing Institute to complete machine learning training tasks that formerly took three to four days, in just one hour – and other foundational scientific computations that researchers formerly could not perform.

The Science and Technology Facilities Council is a part of U.K. Research and Innovation (UKRI) and supports pioneering scientific and engineering research by over 1,700 academic researchers worldwide on space materials and life sciences, nuclear physics and much more.

Facility shot of the Rutherford labs. Image courtesy of Excelero.

Research involves a wide variety of data‐rich analyses on data generated by large‐scale experimental facilities and observatories. These include cryo electron microscopy, synchrotron light, and other techniques. Workloads are massive – often hundreds of terabytes (TB) – and require both fast compute and fast storage. For example, a typical workload involves a significant amount of computing multimodal data, such as those obtained from X‐ray and neutron sources.

Four images from STFC’s cloud masking project using machine language to classifying satellite imagery. Image courtesy of Excelero.

STFC’s Scientific Machine Learning (SciML) Group was established with the aim of enabling scientists to analyze large amounts of data, with the group bringing machine learning and AI expertise. The group routinely utilizes deep neural networks running on state of the art NVIDIA DGX‐2 GPU computing systems located at the Scientific Data Centre at its Rutherford Appleton Laboratory site near Oxford. As the need for image processing expanded, the use of GPU‐based workstations needed to be extended to support the high throughput and low latency required for end‐user response times. Adding NVIDIA DGX‐2 servers offered higher computational support, yet lacked the enterprise‐level storage functionality required to scale out the resource across the hundreds of researchers.

High performance computing solutions provider, Boston Ltd., worked with STFC to evaluate all‐flash arrays and open systems‐based storage options, and commissioned a benchmark of Excelero’s NVMesh for share NVMe Flash storage at local performance.

Boston Ltd.’s benchmark results showed the proposed STFC architecture delivered an average latency of 70 microseconds – nearly one‐quarter of the typical 250 microsecond latency of traditional controller‐based enterprise storage when running NVIDIA validation tests on each NVIDIA DGX‐2 system. The combined NVMesh and BeeGFS deployment therefore showed potential for meeting STFC’s high throughput, low latency demands.

STFC’s storage architecture now includes two Boston Flash‐IO Talyn systems built on SuperMicro building blocks, networked via a Mellanox 100G InfiniBand network to two NVIDIA DGX‐2 computing systems, each with 16 NVIDIA 32GB V100 SXM modules.

Operational since July 2019, STFC’s storage architecture enabled running training sets that formerly took three to four days, in under an hour. With the BeeGFS file system providing a single name space to simplify management and virtualization, and the low latency and high throughput of its NVMesh system, STFC now has a GPU computing architecture where storage no longer presents a bottleneck, even with its complex research needs.

Backed by its new deployment, user communities surrounding this new system, including users from the Alan Turing Institute, are now able to carry out machine learning research projects covering a number of disciplines, including environment, life sciences, materials, space sciences and astronomy.

“In benchmark testing we quickly saw that our Flash‐IO Talyn systems with the Excelero NVMesh software delivered a significant performance enhancement over traditional controller‐ based architectures found in all‐flash arrays – and the ease of installation of a packaged solution,” said Matthew Parfitt, HPC commercial manager at Boston Ltd., who oversaw the deployment.

“Fundamental scientific research needs a clear computational path to completion, without the storage bottleneck that is endemic when NVMe resources are not virtualized,” said Lior Gal, CEO and co‐founder of Excelero. “We’re proud that our NVMesh software helped our partner Boston Ltd. put an essential building block in place in the STFC architecture to support STFC’s vital initiatives.”

Excelero and Boston Ltd. both are showcasing their deployment at STFC along with deployments at other major HPC research facilities around the world at the SC19 Supercomputing event, Denver CO this week. Visit Excelero in booth #601, or online at www.excelero.com, and visit Boston Ltd. in booth #1849 or online at www.boston.co.uk.

About Excelero

Excelero delivers low‐latency distributed block storage for hyperscale applications such as AI, machine learning and GPU computing, in the Cloud and on the Edge. Founded in 2014 by a team of storage veterans and inspired by the Tech Giants’ shared‐nothing architectures for web‐scale applications, the company has designed a software‐defined block storage solution that meets the low‐latency performance and scalability requirements of the largest web‐scale and enterprise applications.


Source: Excelero 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Research Scales to 11,400 Cores for EDA

August 5, 2021

For many HPC users, their needs are not evenly distributed throughout a year: some might need few – if any – resources for months, then they might need a very large system for a week. For those kinds of users, large Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learned from more than 100 years of combined experience. While it Read more…

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Careers in Cybersecurity Featured at PEARC21

August 5, 2021

The PEARC21 (Practice & Experience in Advanced Research Computing) Student Program featured a Cybersecurity Careers Panel. Five experts shared lessons learn Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire