Science Beyond Siri: A Team of Educators and Computer Scientists Take on AI

November 3, 2022

Nov. 3, 2022 — The rise of artificial intelligence (AI) and a branch of AI called machine learning, which focuses on the use of data and algorithms to imitate the way that humans learn, is rapidly changing the way data-intensive scientific discovery is being done.

Argonne National Laboratory and Northern Illinois University collaborated to host a camp that introduced middle school and high school students to artificial intelligence. Credit: Argonne.

Data-intensive science is a modern, exploration-centered style of science that heavily relies on advanced computing capabilities and software tools to manipulate and explore massive data sets. The introduction of new and better machine learning techniques is now being used to assist and automate scientific discovery of increasingly complex problems.

“AI research is making major strides,” said Michael E. Papka, a deputy associate laboratory director and supercomputing facility director at the U.S. Department of Energy’s (DOE) Argonne National Laboratory who is also a professor of computer science at the University of Illinois Chicago (UIC). ​“We are seeing progress in many areas of AI, made not only by new techniques, but especially by new hardware for running computationally intensive AI models.”

Two years ago, Papka and a like-minded group of STEM (science, technology, engineering and mathematics) educators, and computer scientists began meeting weekly to discuss a future workforce skills gap in addressing AI problems. They began to brainstorm about a new tool, or perhaps a teaching module, that would introduce AI concepts to the young researchers of tomorrow.

The team, which includes scientific and educational outreach staff from Argonne and STEM educators from Northern Illinois University (NIU) and UIC, wanted to explore areas where a future workforce undoubtedly will be needed: AI software developers and data science domain experts. Over several months, the group met with AI domain experts, early career scientists using AI systems in their research and graduate students who work on data science tools.

Argonne’s Michael E. Papka.

Some technologies are still in the experimental phase, including the growing collection of AI hardware found at the Argonne Leadership Computing Facility’s (ALCF) AI Testbed. Nevertheless, AI methods such as machine learning, which uses algorithms to parse and learn from input data, and deep learning, a subfield of machine learning that uses a complex structure of algorithms modeled on the human brain to learn and make decisions, are beginning to assist with profound scientific breakthroughs. These methods have predicted the 3D structures of proteins for medical research and have performed rote but vital tasks such as identifying optimal candidate materials for harvesting sunlight. The ALCF is a DOE Office of Science user facility.

Such developments will make AI competency an essential workforce skill. ​“Looking for ways to integrate AI methodology into scientific problems is the first step towards finding ways to bridge them,” said Meridith Bruozas, institutional partnerships director at Argonne and the AI collaboration team member helping develop the curriculum. ​“As a premier research organization, we have a keen interest in cultivating AI skills in the future workforce.”

Ideas began to take form for what a data-driven, research-based experience might look like. It would give the students access to large data sets, model real-world scientific practices, and introduce the AI-based methods that data scientists use to gain insight into a question of interest.

Lesson One: What is it?

Argonne is one of a growing number of research organizations that are incorporating powerful AI resources and techniques to drive new discoveries. But not all AI systems and techniques, such as machine learning, need to be powerful to make impactful contributions to society. An AI-powered system is any device or computer system that performs human intelligence tasks by leveraging complex data sets. Such systems can still be opaque; many people use AI models without knowing how they work. Understanding how to adjust the models to provide useful results is still a new and active area of research. The team saw a challenge in linking the technical aspects of AI to its potential to solve big problems in a way that interested students personally.

Building awareness of how machines can be used to simulate human intelligence processes seemed like a good starting point before moving onto solving problems — such as how to simulate data sets, how to build confidence in results and how to build training data sets that avoid the risks and shortcomings of AI-based methods.

“We had the expectation of zero programming experience, so we quickly landed on ways to potentially teach AI concepts from an ​‘unplugged’ data science perspective,” said John Domyancich, Argonne Learning Center lead. ​“Activities to get them thinking about how to use data to answer questions and start to determine what other information they might need to reach an answer with a high degree of confidence.”

Another challenge for the team was one of scale: What type, and how much data would be required to be useful? And how would students begin to frame the questions they sought to answer?

From Labeling Birdsongs to Identifying Polluted Rivers

In July 2021, the team ran a month-long summer pilot program with high school students recruited through NIU’s Upward Bound program. After being introduced to the broader concepts of AI and machine learning, students worked in groups to analyze AI-generated data sets using some of the same tools that scientists use to train different machine learning models, including Jupyter Notebooks.

They used Spotify data and models to learn how to identify a music genre, then how to catalog and recognize bird songs. ​“We asked them to think about how a human might approach the task, and then how a computer might approach the same task,” said Brenda Lopez Silva, one of the science educators who assisted with the pilot summer camp. ​“Spoiler alert: The computer basically learns what a human teaches it. That opened the door to some interesting discussions about how ethics might factor into AI today and in the future.”

In the summer of 2022, the team restructured the camp to be shorter and more intensive, and the activities relied on sensor-collected data about the environment in Northern Illinois. Students explored how computer vision might be used to optimize street crossings. Another task involved sorting and ranking images of a river to try to determine its pollution level. This time, the instructors used a different approach to link what students did using pen and paper to how scientists use machine learning to make discoveries.

For the river health activity, students attempted to verify their assumptions about the river by structuring the data available to them (images) and built a decision tree (a method for reaching a conclusion based on those inputs), only to realize that the data was insufficient to answer the question. ​“The task demanded an advanced level of thinking,” said Kristin Brynteson, director of NIU’s STEAM (science, technology, engineering, arts and mathematics) program, who led the AI camp sessions. ​“The students needed to see beyond the camera, to challenge the data and how it is labeled.”

“It may be possible that an AI system could infer river health starting with camera images, but it would require a lot of data for it to work,” said Nicola Ferrier, an Argonne senior computer scientist and AI domain expert who is consulting with the team. ​“This exercise was a good first step toward introducing concepts of pattern detection across features.”

The team noticed that once the students did a data-sorting and weighting activity by hand they were better able to grasp the algorithm and understand how a computer would do the same task. ​“It was educational for the students to reason through the information processing tasks instead of simply letting someone else’s algorithm do the work,” said Papka.

Much work lies ahead, but the team is closer to laying down the framework for a ​“classroom-usable” approach to teaching AI principles — one that also incorporates accessible technologies to serve as instruments for data collection and analysis. Leading contenders include sensor nodes, either purpose-built to collect student-driven investigations, or access to a data portal linked to an already-deployed sensor network.

“We are excited to be actively scoping out something that could provide an entry point for students to explore science and learn AI,” said Bruozas. ​“Something that serves as a portal for students to access and analyze data on demand and apply it to a problem they want to solve.”

About Argonne

The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines. Supported by the U.S. Department of Energy’s (DOE’s) Office of Science, Advanced Scientific Computing Research (ASCR) program, the ALCF is one of two DOE Leadership Computing Facilities in the nation dedicated to open science.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.


Source: Laura Wolf, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

2022 Road Trip: NASA Ames Takes Off

November 25, 2022

I left Dallas very early Friday morning after the conclusion of SC22. I had a race with the devil to get from Dallas to Mountain View, Calif., by Sunday. According to Google Maps, this 1,957 mile jaunt would be the longe Read more…

2022 Road Trip: Sandia Brain Trust Sounds Off

November 24, 2022

As the 2022 Great American Supercomputing Road Trip carries on, it’s Sandia’s turn. It was a bright sunny day when I rolled into Albuquerque after a high-speed run from Los Alamos National Laboratory. My interview su Read more…

2022 HPC Road Trip: Los Alamos

November 23, 2022

With SC22 in the rearview mirror, it’s time to get back to the 2022 Great American Supercomputing Road Trip. To refresh everyone’s memory, I jumped in the car on November 3rd and headed towards SC22 in Dallas, stoppi Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built on technology developed at Harvard and MIT, QuEra, is one of Read more…

AWS Solution Channel

Shutterstock 1648511269

Avoid overspending with AWS Batch using a serverless cost guardian monitoring architecture

Pay-as-you-go resources are a compelling but daunting concept for budget conscious research customers. Uncertainty of cloud costs is a barrier-to-entry for most, and having near real-time cost visibility is critical. Read more…

 

shutterstock_1431394361

AI and the need for purpose-built cloud infrastructure

Modern AI solutions augment human understanding, preferences, intent, and even spoken language. AI improves our knowledge and understanding by delivering faster, more informed insights that fuel transformation beyond anything previously imagined. Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected “how supercomputing is continuously changing the world by Read more…

Chipmakers Looking at New Architecture to Drive Computing Ahead

November 23, 2022

The ability to scale current computing designs is reaching a breaking point, and chipmakers such as Intel, Qualcomm and AMD are putting their brains together on an alternate architecture to push computing forward. The chipmakers are coalescing around the new concept of sparse computing, which involves bringing computing to data... Read more…

QuEra’s Quest: Build a Flexible Neutral Atom-based Quantum Computer

November 23, 2022

Last month, QuEra Computing began providing access to its 256-qubit, neutral atom-based quantum system, Aquila, from Amazon Braket. Founded in 2018, and built o Read more…

SC22’s ‘HPC Accelerates’ Plenary Stresses Need for Collaboration

November 21, 2022

Every year, SC has a theme. For SC22 – held last week in Dallas – it was “HPC Accelerates”: a theme that conference chair Candace Culhane said reflected Read more…

Quantum – Are We There (or Close) Yet? No, Says the Panel

November 19, 2022

For all of its politeness, a fascinating panel on the last day of SC22 – Quantum Computing: A Future for HPC Acceleration? – mostly served to illustrate the Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

Gordon Bell Special Prize Goes to LLM-Based Covid Variant Prediction

November 17, 2022

For three years running, ACM has awarded not only its long-standing Gordon Bell Prize (read more about this year’s winner here!) but also its Gordon Bell Spec Read more…

2022 Gordon Bell Prize Goes to Plasma Accelerator Research

November 17, 2022

At the awards ceremony at SC22 in Dallas today, ACM awarded the 2022 ACM Gordon Bell Prize to a team of researchers who used four major supercomputers – inclu Read more…

Gordon Bell Nominee Used LLMs, HPC, Cerebras CS-2 to Predict Covid Variants

November 17, 2022

Large language models (LLMs) have taken the tech world by storm over the past couple of years, dominating headlines with their ability to generate convincing hu Read more…

Nvidia Shuts Out RISC-V Software Support for GPUs 

September 23, 2022

Nvidia is not interested in bringing software support to its GPUs for the RISC-V architecture despite being an early adopter of the open-source technology in its GPU controllers. Nvidia has no plans to add RISC-V support for CUDA, which is the proprietary GPU software platform, a company representative... Read more…

RISC-V Is Far from Being an Alternative to x86 and Arm in HPC

November 18, 2022

One of the original RISC-V designers this week boldly predicted that the open architecture will surpass rival chip architectures in performance. "The prediction is two or three years we'll be surpassing your architectures and available performance with... Read more…

AWS Takes the Short and Long View of Quantum Computing

August 30, 2022

It is perhaps not surprising that the big cloud providers – a poor term really – have jumped into quantum computing. Amazon, Microsoft Azure, Google, and th Read more…

Chinese Startup Biren Details BR100 GPU

August 22, 2022

Amid the high-performance GPU turf tussle between AMD and Nvidia (and soon, Intel), a new, China-based player is emerging: Biren Technology, founded in 2019 and headquartered in Shanghai. At Hot Chips 34, Biren co-founder and president Lingjie Xu and Biren CTO Mike Hong took the (virtual) stage to detail the company’s inaugural product: the Biren BR100 general-purpose GPU (GPGPU). “It is my honor to present... Read more…

Tesla Bulks Up Its GPU-Powered AI Super – Is Dojo Next?

August 16, 2022

Tesla has revealed that its biggest in-house AI supercomputer – which we wrote about last year – now has a total of 7,360 A100 GPUs, a nearly 28 percent uplift from its previous total of 5,760 GPUs. That’s enough GPU oomph for a top seven spot on the Top500, although the tech company best known for its electric vehicles has not publicly benchmarked the system. If it had, it would... Read more…

AMD Thrives in Servers amid Intel Restructuring, Layoffs

November 12, 2022

Chipmakers regularly indulge in a game of brinkmanship, with an example being Intel and AMD trying to upstage one another with server chip launches this week. But each of those companies are in different positions, with AMD playing its traditional role of a scrappy underdog trying to unseat the behemoth Intel... Read more…

JPMorgan Chase Bets Big on Quantum Computing

October 12, 2022

Most talk about quantum computing today, at least in HPC circles, focuses on advancing technology and the hurdles that remain. There are plenty of the latter. F Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

Leading Solution Providers

Contributors

Using Exascale Supercomputers to Make Clean Fusion Energy Possible

September 2, 2022

Fusion, the nuclear reaction that powers the Sun and the stars, has incredible potential as a source of safe, carbon-free and essentially limitless energy. But Read more…

Nvidia, Qualcomm Shine in MLPerf Inference; Intel’s Sapphire Rapids Makes an Appearance.

September 8, 2022

The steady maturation of MLCommons/MLPerf as an AI benchmarking tool was apparent in today’s release of MLPerf v2.1 Inference results. Twenty-one organization Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

SC22 Unveils ACM Gordon Bell Prize Finalists

August 12, 2022

Courtesy of the schedule for the SC22 conference, we now have our first glimpse at the finalists for this year’s coveted Gordon Bell Prize. The Gordon Bell Pr Read more…

Intel Is Opening up Its Chip Factories to Academia

October 6, 2022

Intel is opening up its fabs for academic institutions so researchers can get their hands on physical versions of its chips, with the end goal of boosting semic Read more…

AMD Previews 400 Gig Adaptive SmartNIC SOC at Hot Chips

August 24, 2022

Fresh from finalizing its acquisitions of FPGA provider Xilinx (Feb. 2022) and DPU provider Pensando (May 2022) ), AMD previewed what it calls a 400 Gig Adaptive smartNIC SOC yesterday at Hot Chips. It is another contender in the increasingly crowded and blurry smartNIC/DPU space where distinguishing between the two isn’t always easy. The motivation for these device types... Read more…

Google Program to Free Chips Boosts University Semiconductor Design

August 11, 2022

A Google-led program to design and manufacture chips for free is becoming popular among researchers and computer enthusiasts. The search giant's open silicon program is providing the tools for anyone to design chips, which then get manufactured. Google foots the entire bill, from a chip's conception to delivery of the final product in a user's hand. Google's... Read more…

AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12 Chiplets

November 10, 2022

AMD’s fourth-generation Epyc processor line has arrived, starting with the “general-purpose” architecture, called “Genoa,” the successor to third-gen Eypc Milan, which debuted in March of last year. At a launch event held today in San Francisco, AMD announced the general availability of the latest Epyc CPUs with up to 96 TSMC 5nm Zen 4 cores... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire