Scientists Construct Novel Quantum Testbed One Atom at a Time

November 29, 2022

Nov. 29, 2022 — With atomic precision, scientists built a testbed to manipulate electrons in entirely new ways with potential applications in quantum computing. Electrons are tiny objects that can carry electricity and information across materials and between devices. They are often visualized as discrete spheres, either moving through a circuit or connected to an atom. While this classical model works well for many scenarios, quantum mechanics paints a radically different picture of the nature of electrons involving waves, clouds and a lot of math.

Left, atomic structure of actual graphene nanoribbon. Middle, CO molecules mapped onto a copper surface to produce graphene structure. Right, scanning tunneling microscope image of the resulting artificial graphene nanoribbon. Credit: Argonne.

As scientists gain more understanding of quantum mechanics, they are looking beyond our current methods to engineer materials with unique electronic properties that allow them to store and manipulate information in entirely new ways.

Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have created a novel testbed to explore the behavior of electrons in a special class of materials called topological insulators, which could see applications in quantum computing.

Topology — a field of mathematics regarding the nature of shapes — provides unique insight into the physics of materials. Electrons on the surface of topological insulators can exist in states that allow them to flow with almost no resistance. These states can also protect the system from external noise, or influence, a major challenge for emerging quantum information technologies.

Scientists are exploring the power of quantum mechanical phenomena like these topological states to store and communicate information with greater speed, security and energy efficiency.

“We were able to control the appearance of topological states in our testbed,” said Argonne theoretical physicist Pierre Darancet, a lead author on the paper. ​“Our work represents a step toward exploiting topological phenomena for quantum computing.”

I can’t believe it’s not graphene!

Super strong and a superior conductor of electrons, the material graphene is a one-atom-thick sheet of carbon atoms with many possible applications. In previous work, graphene nanoribbons — small strips of graphene — were shown to exhibit promising topological states. Inspired by this, the Argonne team constructed an artificial graphene testbed with atomic precision in hopes to further explore those topological effects.

“Making artificial graphene nanoribbons gave us more precise control over the system compared to synthesizing actual nanoribbons, which can be messy,” said Darancet. ​“It was a theorist’s dream to have experimentalists building atomic Legos atom by atom, and it allowed for greater manipulation and exploration of the topology.”

The team constructed artificial graphene nanoribbons by placing individual carbon monoxide (CO) molecules very precisely onto a copper surface using a scanning tunneling microscope (STM) at Argonne’s Center for Nanoscale Materials, a DOE Office of Science user facility.

Scientists generally use microscopes to gather information about materials. In this study, they used the STM to both create and investigate the material. They also developed computer algorithms to automate construction, allowing them to operate the STM remotely. ​“I would wake up, have my coffee and then start playing with a microscope that was 30 miles away,” said Dan Trainer, who led the STM portion of the work as a postdoctoral appointee at Argonne.

Using the pristine tip of the microscope, Trainer and team positioned the CO molecules, one by one, onto the copper surface in a way that confined their electrons to emulate the honeycomb structure exhibited by carbon atoms alone in a real graphene nanoribbon.

The resulting artificial nanoribbon indeed displayed the same electronic and topological properties researchers predicted would appear in the real thing.

Achieving topological states

In current electronic technologies, information is represented with ones and zeros that correspond to the presence or absence of electrons flowing in a circuit. When a material exists in a topological state as demonstrated in this study, the electrons on its surface are better described as a sort of quantum mechanical hive mind, displaying wave patterns across the material.

Scientists used this scanning tunneling microscope at Argonne’s Center for Nanoscale Materials to create and characterize artificial graphene nanoribbons. Credit: Argonne.

One can think of electrons on metal surfaces as waves in a pond, where the water organizes itself as a series of vibrations ricocheting on the lake boundaries, rather than a mere soup of unrelated H2O molecules. Topological states are rogue waves emerging from the complex interactions between the individual electrons on the surface.

A primary challenge in this experiment was to find the optimal spacing of the CO molecules required to lock the system’s electrons into something electronically equivalent to graphene. When the scientists achieved this precise configuration in their testbed, topological waves appeared on the copper surface. As with the aurora borealis at the North Pole, when conditions were just right, the ordinary system of particles became a spectacular electromagnetic display.

“It’s incredibly rare for an experimental system to match theoretical predictions so perfectly,” said Trainer. ​“It was really stunning.”

The results of the study were published in an article ​“Artificial Graphene Nanoribbons: A Test Bed for Topology and Low-Dimensional Dirac Physics” in ACS Nano.

This work was supported by the DOE Office of Science. Other authors include Brandon Fisher, Nathan Guisinger, Saw-Wai Hla, Connie Pfeiffer and Srilok Srinivasan from Argonne, as well as Yuan Zhang from Old Dominion University.


Source: Savannah Mitchem, Argonne Lab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Touts Strong Results on Financial Services Inference Benchmark

February 3, 2023

The next-gen Hopper family may be on its way, but that isn’t stopping Nvidia’s popular A100 GPU from leading another benchmark on its way out. This time, it’s the STAC-ML inference benchmark, produced by the Securi Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnerships in strategic technologies and defense industries across th Read more…

Pittsburgh Supercomputing Enables Transparent Medicare Outcome AI

February 2, 2023

Medical applications of AI are replete with promise, but stymied by opacity: with lives on the line, concerns over AI models’ often-inscrutable reasoning – and as a result, possible biases embedded in those models Read more…

Europe’s LUMI Supercomputer Has Officially Been Accepted

February 1, 2023

“LUMI is officially here!” proclaimed the headline of a blog post written by Pekka Manninen, director of science and technology for CSC, Finland’s state-owned IT center. The EuroHPC-organized supercomputer’s most Read more…

AWS Solution Channel

Shutterstock 2069893598

Cost-effective and accurate genomics analysis with Sentieon on AWS

This blog post was contributed by Don Freed, Senior Bioinformatics Scientist, and Brendan Gallagher, Head of Business Development at Sentieon; and Olivia Choudhury, PhD, Senior Partner Solutions Architect, Sujaya Srinivasan, Genomics Solutions Architect, and Aniket Deshpande, Senior Specialist, HPC HCLS at AWS. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1453953692

Microsoft and NVIDIA Experts Talk AI Infrastructure

As AI emerges as a crucial tool in so many sectors, it’s clear that the need for optimized AI infrastructure is growing. Going beyond just GPU-based clusters, cloud infrastructure that provides low-latency, high-bandwidth interconnects and high-performance storage can help organizations handle AI workloads more efficiently and produce faster results. Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for more computing specifically targeted at artificial intellige Read more…

Quantum Computing Firm Rigetti Faces Delisting

February 3, 2023

Quantum computing companies are seeing their market caps crumble as investors patiently await out the winner-take-all approach to technology development. Quantum computing firms such as Rigetti Computing, IonQ and D-Wave went public through mergers with blank-check companies in the last two years, with valuations at the time of well over $1 billion. Now the market capitalization of these companies are less than half... Read more…

US and India Strengthen HPC, Quantum Ties Amid Tech Tension with China

February 2, 2023

Last May, the United States and India announced the “Initiative on Critical and Emerging Technology” (iCET), aimed at expanding the countries’ partnership Read more…

Intel’s Gaudi3 AI Chip Survives Axe, Successor May Combine with GPUs

February 1, 2023

Intel's paring projects and products amid financial struggles, but AI products are taking on a major role as the company tweaks its chip roadmap to account for Read more…

Roadmap for Building a US National AI Research Resource Released

January 31, 2023

Last week the National AI Research Resource (NAIRR) Task Force released its final report and roadmap for building a national AI infrastructure to include comput Read more…

PFAS Regulations, 3M Exit to Impact Two-Phase Cooling in HPC

January 27, 2023

Per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals,” pose a number of health risks to humans, with more suspected but not yet confirmed Read more…

Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS

January 26, 2023

Europe-based quantum computing pioneers Multiverse Computing and Pasqal, and global bank Crédit Agricole CIB today announced successful conclusion of a 1.5-yea Read more…

Critics Don’t Want Politicians Deciding the Future of Semiconductors

January 26, 2023

The future of the semiconductor industry was partially being decided last week by a mix of politicians, policy hawks and chip industry executives jockeying for Read more…

Riken Plans ‘Virtual Fugaku’ on AWS

January 26, 2023

The development of a national flagship supercomputer aimed at exascale computing continues to be a heated competition, especially in the United States, the Euro Read more…

Leading Solution Providers

Contributors

SC22 Booth Videos

AMD @ SC22
Altair @ SC22
AWS @ SC22
Ayar Labs @ SC22
CoolIT @ SC22
Cornelis Networks @ SC22
DDN @ SC22
Dell Technologies @ SC22
HPE @ SC22
Intel @ SC22
Intelligent Light @ SC22
Lancium @ SC22
Lenovo @ SC22
Microsoft and NVIDIA @ SC22
One Stop Systems @ SC22
Penguin Solutions @ SC22
QCT @ SC22
Supermicro @ SC22
Tuxera @ SC22
Tyan Computer @ SC22
  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire