Scientists Enlist Supercomputers, Machine Learning to Automatically Identify Brain Tumors

October 5, 2017

Oct. 5 — Primary brain tumors encompass a wide range of tumors depending on the cell type, the aggressiveness, and stage of tumor. Quickly and accurately characterizing the tumor is a critical aspect of treatment planning. It is a task currently reserved for trained radiologists, but in the future, computing, and in particular high-performance computing, will play a supportive role.

George Biros, professor of mechanical engineering and leader of the ICES Parallel Algorithms for Data Analysis and Simulation Group at The University of Texas at Austin, has worked for nearly a decade to create accurate and efficient computing algorithms that can characterize gliomas, the most common and aggressive type of primary brain tumor.

At the 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2017), Biros and collaborators from the University of Pennsylvania (led by Professor Christos Davatzikos), University of Houston (led by Professor Andreas Mang) and University of Stuttgart (led by Professor Miriam Mehl), presented results of a new, fully automatic method that combines biophysical models of tumor growth with machine learning algorithms for the analysis of Magnetic Resonance (MR) imaging data of glioma patients. All the components of the new method were enabled by supercomputers at the Texas Advanced Computing Center (TACC).

The top row shows the initial configuration. The second row shows the same configuration at the final iteration of our coupled tumor inversion and registration scheme. The three images on the bottom show the corresponding hard segmentation. The obtained atlas based segmentation (middle image) and the ground truth segmentation for the patient are very similar.

The top row shows the initial configuration. The second row shows the same configuration at the final iteration of our coupled tumor inversion and registration scheme. The three images on the bottom show the corresponding hard segmentation. The obtained atlas based segmentation (middle image) and the ground truth segmentation for the patient are very similar. Source: TACC

Biros’ team tested their new method in the Multimodal Brain Tumor Segmentation Challenge 2017 (BRaTS’17), an annual competition where research groups from around the world present methods and results for computer-aided identification and classification of brain tumors, as well as different types of cancerous regions, using pre-operative MR scans.

Their system scored in the top 25 percent in the challenge and were near the top for whole tumor segmentation.

“The competition is related to the characterization of abnormal tissue on patients who suffer from glioma tumors, the most prevalent form of primary brain tumor,” Biros said. “Our goal is to take an image and delineate it automatically and identify different types of abnormal tissue – edema, enhancing tumor (areas with very aggressive tumors), and necrotic tissue. It’s similar to taking a picture of one’s family and doing facial recognition to identify each member, but here you do tissue recognition, and all this has to be done automatically.”

Training And Testing The Prediction Pipeline

For the challenge, Biros and his team of more than a dozen students and researchers, were provided in advance with 300 sets of brain images on which all teams calibrated their methods (what is called “training” in machine learning parlance).

In the final part of the challenge, groups were given data from 140 patients and had to identify the location of tumors and segment them into different tissue types over the course of just two days.

“In that 48-hour window, we needed all the processing power we could get,” Biros explained.

The image processing, analysis and prediction pipeline that Biros and his team used has two main steps: a supervised machine learning step where the computer creates a probability map for the target classes (“whole tumor,” “edema,” “tumor core”); and a second step where they combine these probabilities with a biophysical model that represents how tumors grow in mathematical terms, which imposes limits on the analyses and helps find correlations.

TACC computing resources enabled Biros’ team to use large-scale nearest neighbor classifiers (a machine learning method). For every voxel, or three-dimensional pixel, in a MR brain image, the system tries to find all the similar voxels in the brains it has already seen to determine if the area represents a tumor or a non-tumor.

With 1.5 million voxels per brain and 300 brains to assess, that means the computer must look at half billion voxels for every new voxel of the 140 unknown brains that it analyzes, deciding for each whether the voxel represents a tumor or healthy tissue.

“We used fast algorithms and approximations to make this possible, but we still needed supercomputers,” Biros said.

Each of the several steps in the analysis pipeline used separate TACC computing systems. The nearest neighbor machine learning classification component simultaneously used 60 nodes (each consisting of 68 processors) on Stampede2, TACC’s latest supercomputer and one of the most powerful systems in the world. (Biros was among the first researchers to gain access to the Stampede2 supercomputer in the spring and was able to test and tune his algorithm for the new processors there.) They used Lonestar 5 to run the biophysical models and Maverick to combine the segmentations.

Most teams had to limit the amount of training data they used or apply more simplified classifier algorithms on the whole training set, but priority access to TACC’s ecosystem of supercomputers meant Biros’ team could explore more complex methods.

“George came to us before the BRaTS Challenge and asked if they could get priority access to Stampede2, Lonestar5, and Maverick to ensure that their jobs got through in time to complete the challenge,” said Bill Barth, TACC’s Director of High Performance Computing. “We decided that just increasing their priority probably wouldn’t cut it, so we decided to give them a reservation on each system to cover their needs for the 48 hours of the challenge.”

George Biros, professor of mechanical engineering and leader of the ICES Parallel Algorithms for Data Analysis and Simulation Group at The University of Texas at Austin

As it turned out, Biros and his team were able to run their analysis pipeline on 140 brains in less than 4 hours and correctly characterized the testing data with nearly 90 percent accuracy, with is comparable to human radiologists.

Their method is fully automatic, Biros said, and needed only a small number of initial algorithmic parameters to assess the image data and classify tumors without any hands-on effort.

Integrating Diverse Research

The team’s scalable, biophysics-based image analysis system was the culmination of 10 years of research into a variety of computational problems, according to Biros.

“In our group and our collaborators’ groups, we have multiple research threads on image analysis, scalable machine learning and numerical algorithms,” he explained. “But this was the first time we put everything together for an application to make our method work for a really challenging problem. It’s not easy, but it’s very fulfilling.”

The BRaTS competition thus represents a turning point in his research, Biros said.

“We have all the tools and basic ideas, now we polish it and see how we can improve it.”

The image segmentation classifier is set to be deployed at the University of Pennsylvania by the end of the year in partnership with his collaborator, Christos Davatzikos, director of the Center for Biomedical Image Computing and Analytics and a professor of Radiology there. It won’t be a substitute for radiologists and surgeons, but it will improve the reproducibility of assessments and potentially speed up diagnoses.

The methods that the team developed go beyond brain tumor identification. They are applicable to many problems in medicine as well as in physics, including semiconductor design and plasma dynamics.

Said Biros: “Having access to TACC supercomputers makes our life infinitely easier, makes us more productive and is a real advantage.”


Biros’ research is jointly funded by the National Institutes of Health, the National Science Foundation, the Department of Energy, and the Air Force Office of Scientific Research. Stampede2 is supported by the National Science Foundation (Award #1540931).


Source: Aaron Dubrow, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

“Lunch & Learn” to Explore the Growing Applications of Genomic Analytics

In the digital age of medicine, healthcare providers are rapidly transforming their approach to patient care. Traditional technologies are no longer sufficient to process vast quantities of medical data (including patient histories, treatment plans, diagnostic reports, and more), challenging organizations to invest in a new style of IT to enable faster and higher-quality care. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This