Scientists from SQMS Center, Jefferson Lab and University of Waterloo Receive Quantum Horizon Funding Award

January 27, 2023

Jan. 27, 2023 — The Quantum Horizons: QIS Research and Innovation for Nuclear Science award from the U.S. Department of Energy’s Office of Nuclear Physics has enabled a new collaboration between researchers who develop technologies for nuclear physics, quantum information science and high-energy physics.

From left to right are Mustafa Bal, the lead-PI from the Fermilab-hosted SQMS Center; Anne-Marie Valente-Feliciano from Jefferson Lab; and Adrian Lupascu from the University of Waterloo.

Mustafa Bal, associate scientist at the U.S. Department of Energy’s Fermi National Accelerator Laboratory-hosted Superconducting Quantum Materials and Systems (SQMS) Center, is the lead principal investigator who will coordinate the project, “QIS and nuclear physics technologies for next generation materials and architectures for high coherence superconducting qubits,” funded by the award.

Joining as co-PIs are Anne-Marie Valente-Feliciano, accelerator physicist at the DOE’s Thomas Jefferson National Accelerator Facility, and Adrian Lupascu, a member of the Institute for Quantum Computing and the Department of Physics and Astronomy at the University of Waterloo in Canada.

“Qubits need to live long enough to make meaningful computations. We are excited to partner with SQMS through the Quantum Horizons work to establish better materials that enable longer qubit lifetimes,” said David Dean, Jefferson Lab’s deputy director for science.

The Decoherence Problem

Aligned with the core mission of the SQMS Center, this awarded proposal seeks to understand and mitigate the loss of quantum information in quantum systems by a phenomenon called decoherence. The decoherence of qubits — devices that harness fragile quantum information — needs to be tackled to fully unlock the power of quantum computers.

The SQMS collaboration brings together dozens of experts in QIS, material science and more to tackle decoherence with the most advanced material analysis tools and qubit foundries.

Building on the SQMS Center’s breadth of expertise and facilities, this award adds Jefferson Lab’s capabilities in producing highly pure niobium films and Waterloo’s experience in designing and measuring different kinds of qubits.

“Our SQMS Center is uniquely positioned to make advancements in the performance of superconducting qubits. We will accelerate towards this goal by exploring new promising and unique pathways,” said Bal. “Through the Quantum Horizon award, we will use the films made by Jefferson Lab to explore material purity as a potential path to improve qubit performance. The experts at the University of Waterloo will expand our capabilities to make other types of qubits.”

Using Ultra-high-quality Niobium Films

Researchers at Fermilab and Jefferson Lab use cavities made of niobium to accelerate particles to near the speed of light. This enables discoveries in high-energy physics at Fermilab and nuclear physics at Jefferson Lab. Cavities made of niobium are the best in the world, but there is room to maintain high performance while reducing costs by depositing a thin film of niobium on a copper cavity.

“We are developing advanced techniques to produce high-quality, niobium-film-based accelerating cavities. We think these films will also improve the lifetime of quantum information in qubits,” said Valente-Feliciano. “Most niobium films have impurities and are atomically disordered, which might contribute to the loss of quantum information in qubits. Our research at Jefferson Lab is producing atomically ordered, highly pure films with the best properties and performance.”

Lupascu will explore new designs for quantum computing devices made with these films and study the devices’ performance at ultra-cold temperatures. This effort will seek ways to be able to produce these devices, while maintaining high performance and reproducibility across a range of devices, which is important for the scalability of quantum computers.

“One of the main areas of interest in our team is in understanding how well quantum information is preserved in devices. For this process, the quality of materials is essential,” said Lupascu. “The film expertise at Jefferson Lab and the collaboration with SQMS will provide an opportunity to explore new physics and advance quantum devices.”

Advancing nuclear physics and quantum information science objectives by collaborating with important quantum efforts, such as the DOE National QIS Centers, was encouraged in the Quantum Horizon funding opportunity announcement, to leverage and facilitate ongoing intellectual progress in QIS.

“We are delighted that the SQMS Center could provide a framework to advance important nuclear physics QIS goals. These goals are synergistic with the technological advancements our national center is striving for,” said Anna Grassellino, Fermilab senior scientist and director of the SQMS Center. “At the same time, nuclear physics technologies will help SQMS and the QIS community answer key open questions for the field, such as if the level of purity of the films making up superconducting qubits is a main performance-limiting factor. Uniting the world’s top experts in various technologically relevant fields will help the QIS community succeed.”

About Fermilab and the Superconducting Quantum Materials and Systems Center

The Superconducting Quantum Materials and Systems Center is one of the five U.S. Department of Energy National Quantum Information Science Research Centers. Led by Fermi National Accelerator Laboratory, SQMS is a collaboration of 26 partner institutions — national labs, academia and industry — working together to bring transformational advances in the field of quantum information science. The center leverages Fermilab’s expertise in building complex particle accelerators to engineer multiqubit quantum processor platforms based on state-of-the-art qubits and superconducting technologies. Working hand in hand with embedded industry partners, SQMS will build a quantum computer and new quantum sensors at Fermilab, which will open unprecedented computational opportunities.

Fermi National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.


Source: Maxwell Bernstein, Fermilab

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire