Scientists Probe Solar Wind with Blue Waters Supercomputer

June 2, 2014

HUNTSVILLE, Ala., June 2 — Talk about a mathematics hot rod – how does 13 quadrillion calculations per second grab you? A scalable computer code developed at The University of Alabama in Huntsville (UAH) that efficiently uses supercomputing power, plus important areas of UAH scientific inquiry, landed scientists at the Department of Space Science and Center for Space Plasma and Aeronomic Research (CSPAR) in the driver’s seat for a highly sought chance to run complex equations on a blisteringly fast supercomputer.

The UAH effort using the Cray Blue Waters supercomputer supported by the National Science Foundation (NSF) and the University of Illinois, where it is located, resulted in advances in understanding solar wind and the heliosphere.

“It’s one of the fastest supercomputers in the world,” says Dr. Nikolai Pogorelov, who works closely with co-principal investigators Dr. Jacob Heerikhuisen and Dr. Sergey Borovikov, and who recently returned from a Blue Waters Symposium at Illinois. “It is the fastest supercomputer that is hosted by a university in the world.”

Power Struggle

In the competitive and code-dense world of supercomputing, think of the UAH scientists as calculations hot rodders, vying with other researchers for computer power to test-drive equations they build to provide them with scientific answers. At the same time, running these complex calculations helps tune up the machine they are using, as ways to make it run more efficiently are discovered.

“We benefit a lot from the supercomputers made by Cray, but in a lot of cases our feedback helps Cray to make a better supercomputer,” says Dr. Pogorelov. The key to achieving both results is the code used to run the program.

“If you want to do a very high resolution simulation taking advantage of a supercomputer’s parallel capabilities and architecture, you must substantially rewrite your code,” says Dr. Pogorelov.

Blue Waters uses hundreds of thousands of computational cores (central processing units) to achieve peak performance of more than 13 quadrillion calculations per second. It has more than 1.5 petabytes of memory, enough to store 300 million digital images; more than 25 petabytes of disk storage, enough to store all of the printed documents in all of the world’s libraries; and up to 500 petabytes of tape storage, enough to store 10 percent of all of the words spoken in the existence of humankind.

Getting to drive a supercomputer like that depends on acceptance by the NSF’s Petascale Computing Resource Allocations (PRAC) program of both the science being explored and efficiency shown in using the supercomputer’s resources. Scientists also use the Extreme Science and Engineering Discovery Environment (XSEDE), a single virtual system supported by the NSF they can use to interactively share computing resources, data and expertise. There’s limited supercomputing capacity available nationally, so competition is fierce.

Supercomputing Leaders

“The combination of these skills allowed us to be leaders in supercomputing in the country,” says Dr. Pogorelov. “In the NSF proposal process, one goal was that only the most advanced codes should be used to achieve breakthrough results.”

That is no easy task, and the UAH researchers wrote 150,000 lines of a heliospheric modeling code they call Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) in C++ and Fortran for their experiments.

(For more information on the code, see “Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite;” Pogorelov, N. V.; Borovikov, S. N.; Bedford, M. C.; Heerikhuisen, J.; Kim, T. K.; Kryukov, I. A.; Zank, G. P., in Numerical Modeling of Space Plasma Flows, San Francisco: Astronomical Society of the Pacific Conf. Ser. 474, 2013, p 165. A more recent paper, “MS-FLUKSS and Its Application to Modeling Flows of Partially Ionized Plasma in the Heliosphere,” has been accepted as one of only 10 Lightning Talks to be given at XSEDE14 in Atlanta July 13-18.)

When the UAH scientists added their code to the Chombo framework – a publicly available software for adaptive solution of partial differential equations developed by the team’s long-time collaborators at Lawrence Berkeley National Laboratory – the result was 650,000 total lines of code.

“As a result, even doing a simple thing is not straightforward in these codes and requires a specific combination of skills in physics and space and computer science. It so happened that our group was already strong,” Dr. Pogorelov says. UAH’s code writers had already piloted the Cray Jaguar and Kraken, meanwhile perfecting their parallelization and data handling techniques. “When we submitted the proposal, we were expected to prove our code was scalable.”

Using Blue Waters, Dr. Pogorelov says the team demonstrated its ability to scale its code to efficiently utilize 160,000 computing cores.

Two Scientific Questions

The researchers used the supercomputer to probe two scientific questions, both involving the interaction of the solar wind with the local interstellar medium nearby. The first involves why the Voyager 1 spacecraft surprised scientists by penetrating interstellar space years earlier than models had predicted it would (“Voyager 1 Near the Heliopause;” S. N. Borovikov; N. V. Pogorelov; The Astrophysical Journal Letters, Vol. 783, No. 1, 2014).

“In our study, we found out that there is an instability of the heliosphere that results in deep penetration of interstellar plasma into the heliosphere,” says Dr. Pogorelov. The heliosphere, a vast “bubble” of plasma blown out from the sun, constantly presses against the greater pressure of the interstellar plasma. As the sun advances, it leaves a contrail of solar wind behind it and pushes a boundary of heliosphere ahead.

Dr. Pogorelov and Dr. Borovikov found that there are pockets of interstellar plasma that push into that boundary, called the heliopause, and they conclude that Voyager 1 entered a pocket to shorten its journey into interstellar plasma, a result Dr. Pogorelov is confident in. “This looks like the real thing,” he said.

The second scientific question regarded the flow of the long “heliotail” contrail left by the sun, which the researchers examined using plasma kinetic particle analysis. “We modeled it, and we found that the heliotail can be very long,” says Dr. Pogorelov (“Three-dimensional, numerical simulation of the heliotail using the kinetic model”; a talk by Sergey Borovikov; 2013 Fall AGU Meeting).

“We found out that the heliotail strongly mixes with the interstellar material to where the heliotail eventually seems to disappear,” Dr. Pogorelov says. Their calculations showed the tail extending out to over 5,000 astronomical units. “Our prediction is that the heliotail can extend to 20,000 astronomical units downwind.” To get an idea of just how long that is, just one astronomical unit is 149,597,871 kilometers.

“Technically, we are solving the system of magnetohydrodynamic equations coupled with a kinetic Boltzmann equation,” Dr. Pogorelov says. The Boltzmann equation is named for Ludwig Eduard Boltzmann, an Austrian physicist and philosopher whose greatest achievement was in the development of statistical mechanics, which explains and predicts how the properties of atoms determine the physical properties of matter. “From a scientific viewpoint, it is very important that we model neutral atoms kinetically with the Boltzmann equation because collisions are very rare between hydrogen atoms and ions.”

Such solutions “take a lot of computational power,” says Dr. Pogorelov. “It is not only our previous research that made it possible to use this supercomputer, but our current research then leads to new results that create funding to support more projects on new questions.”

One area of possible future exploration the UAH team has acquired support to deal with from NASA is a smart, adaptive refinement of the computational grid used to explore the heliosphere. “The idea is that we can perform small-scale simulations of instabilities and magnetic reconnection locally,” Dr. Pogorelov says, “while simultaneously doing a good job in the resolution of global features of the solar wind’s interaction with the interstellar medium.”

Source: University of Alabama Huntsville

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This