Scientists Probe Solar Wind with Blue Waters Supercomputer

June 2, 2014

HUNTSVILLE, Ala., June 2 — Talk about a mathematics hot rod – how does 13 quadrillion calculations per second grab you? A scalable computer code developed at The University of Alabama in Huntsville (UAH) that efficiently uses supercomputing power, plus important areas of UAH scientific inquiry, landed scientists at the Department of Space Science and Center for Space Plasma and Aeronomic Research (CSPAR) in the driver’s seat for a highly sought chance to run complex equations on a blisteringly fast supercomputer.

The UAH effort using the Cray Blue Waters supercomputer supported by the National Science Foundation (NSF) and the University of Illinois, where it is located, resulted in advances in understanding solar wind and the heliosphere.

“It’s one of the fastest supercomputers in the world,” says Dr. Nikolai Pogorelov, who works closely with co-principal investigators Dr. Jacob Heerikhuisen and Dr. Sergey Borovikov, and who recently returned from a Blue Waters Symposium at Illinois. “It is the fastest supercomputer that is hosted by a university in the world.”

Power Struggle

In the competitive and code-dense world of supercomputing, think of the UAH scientists as calculations hot rodders, vying with other researchers for computer power to test-drive equations they build to provide them with scientific answers. At the same time, running these complex calculations helps tune up the machine they are using, as ways to make it run more efficiently are discovered.

“We benefit a lot from the supercomputers made by Cray, but in a lot of cases our feedback helps Cray to make a better supercomputer,” says Dr. Pogorelov. The key to achieving both results is the code used to run the program.

“If you want to do a very high resolution simulation taking advantage of a supercomputer’s parallel capabilities and architecture, you must substantially rewrite your code,” says Dr. Pogorelov.

Blue Waters uses hundreds of thousands of computational cores (central processing units) to achieve peak performance of more than 13 quadrillion calculations per second. It has more than 1.5 petabytes of memory, enough to store 300 million digital images; more than 25 petabytes of disk storage, enough to store all of the printed documents in all of the world’s libraries; and up to 500 petabytes of tape storage, enough to store 10 percent of all of the words spoken in the existence of humankind.

Getting to drive a supercomputer like that depends on acceptance by the NSF’s Petascale Computing Resource Allocations (PRAC) program of both the science being explored and efficiency shown in using the supercomputer’s resources. Scientists also use the Extreme Science and Engineering Discovery Environment (XSEDE), a single virtual system supported by the NSF they can use to interactively share computing resources, data and expertise. There’s limited supercomputing capacity available nationally, so competition is fierce.

Supercomputing Leaders

“The combination of these skills allowed us to be leaders in supercomputing in the country,” says Dr. Pogorelov. “In the NSF proposal process, one goal was that only the most advanced codes should be used to achieve breakthrough results.”

That is no easy task, and the UAH researchers wrote 150,000 lines of a heliospheric modeling code they call Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) in C++ and Fortran for their experiments.

(For more information on the code, see “Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite;” Pogorelov, N. V.; Borovikov, S. N.; Bedford, M. C.; Heerikhuisen, J.; Kim, T. K.; Kryukov, I. A.; Zank, G. P., in Numerical Modeling of Space Plasma Flows, San Francisco: Astronomical Society of the Pacific Conf. Ser. 474, 2013, p 165. A more recent paper, “MS-FLUKSS and Its Application to Modeling Flows of Partially Ionized Plasma in the Heliosphere,” has been accepted as one of only 10 Lightning Talks to be given at XSEDE14 in Atlanta July 13-18.)

When the UAH scientists added their code to the Chombo framework – a publicly available software for adaptive solution of partial differential equations developed by the team’s long-time collaborators at Lawrence Berkeley National Laboratory – the result was 650,000 total lines of code.

“As a result, even doing a simple thing is not straightforward in these codes and requires a specific combination of skills in physics and space and computer science. It so happened that our group was already strong,” Dr. Pogorelov says. UAH’s code writers had already piloted the Cray Jaguar and Kraken, meanwhile perfecting their parallelization and data handling techniques. “When we submitted the proposal, we were expected to prove our code was scalable.”

Using Blue Waters, Dr. Pogorelov says the team demonstrated its ability to scale its code to efficiently utilize 160,000 computing cores.

Two Scientific Questions

The researchers used the supercomputer to probe two scientific questions, both involving the interaction of the solar wind with the local interstellar medium nearby. The first involves why the Voyager 1 spacecraft surprised scientists by penetrating interstellar space years earlier than models had predicted it would (“Voyager 1 Near the Heliopause;” S. N. Borovikov; N. V. Pogorelov; The Astrophysical Journal Letters, Vol. 783, No. 1, 2014).

“In our study, we found out that there is an instability of the heliosphere that results in deep penetration of interstellar plasma into the heliosphere,” says Dr. Pogorelov. The heliosphere, a vast “bubble” of plasma blown out from the sun, constantly presses against the greater pressure of the interstellar plasma. As the sun advances, it leaves a contrail of solar wind behind it and pushes a boundary of heliosphere ahead.

Dr. Pogorelov and Dr. Borovikov found that there are pockets of interstellar plasma that push into that boundary, called the heliopause, and they conclude that Voyager 1 entered a pocket to shorten its journey into interstellar plasma, a result Dr. Pogorelov is confident in. “This looks like the real thing,” he said.

The second scientific question regarded the flow of the long “heliotail” contrail left by the sun, which the researchers examined using plasma kinetic particle analysis. “We modeled it, and we found that the heliotail can be very long,” says Dr. Pogorelov (“Three-dimensional, numerical simulation of the heliotail using the kinetic model”; a talk by Sergey Borovikov; 2013 Fall AGU Meeting).

“We found out that the heliotail strongly mixes with the interstellar material to where the heliotail eventually seems to disappear,” Dr. Pogorelov says. Their calculations showed the tail extending out to over 5,000 astronomical units. “Our prediction is that the heliotail can extend to 20,000 astronomical units downwind.” To get an idea of just how long that is, just one astronomical unit is 149,597,871 kilometers.

“Technically, we are solving the system of magnetohydrodynamic equations coupled with a kinetic Boltzmann equation,” Dr. Pogorelov says. The Boltzmann equation is named for Ludwig Eduard Boltzmann, an Austrian physicist and philosopher whose greatest achievement was in the development of statistical mechanics, which explains and predicts how the properties of atoms determine the physical properties of matter. “From a scientific viewpoint, it is very important that we model neutral atoms kinetically with the Boltzmann equation because collisions are very rare between hydrogen atoms and ions.”

Such solutions “take a lot of computational power,” says Dr. Pogorelov. “It is not only our previous research that made it possible to use this supercomputer, but our current research then leads to new results that create funding to support more projects on new questions.”

One area of possible future exploration the UAH team has acquired support to deal with from NASA is a smart, adaptive refinement of the computational grid used to explore the heliosphere. “The idea is that we can perform small-scale simulations of instabilities and magnetic reconnection locally,” Dr. Pogorelov says, “while simultaneously doing a good job in the resolution of global features of the solar wind’s interaction with the interstellar medium.”

Source: University of Alabama Huntsville

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chaired by PRACE Council Vice-Chair Sergi Girona (Barcelona Super Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

An Overview of ‘OpenACC for Programmers’ from the Book’s Editors

June 20, 2018

In an era of multicore processors coupled with manycore accelerators in all kinds of devices from smartphones all the way to supercomputers, it is important to train current and future computational scientists of all dom Read more…

By Sunita Chandrasekaran and Guido Juckeland

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose primary use case is to support high IOPS rates to/from a scra Read more…

By John Russell

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Preview the World’s Smartest Supercomputer at ISC 2018

Introducing an accelerated IT infrastructure for HPC & AI workloads Read more…

Lenovo to Debut ‘Neptune’ Cooling Technologies at ISC

June 19, 2018

Lenovo today announced a set of cooling technologies, dubbed Neptune, that include direct to node (DTN) warm water cooling, rear door heat exchanger (RDHX), and hybrid solutions that combine air and liquid cooling. Lenov Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This