Scientists Use Machine Learning to Accelerate Materials Discovery

October 6, 2022

Oct. 6, 2022 — Scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory have recently demonstrated an automated process for identifying and exploring promising new materials by combining machine learning (ML) — a type of artificial intelligence — and high performance computing. The new approach could help accelerate the discovery and design of useful materials.

The final product of the ML algorithm: metastable phase diagrams for carbon. Colored regions indicate conditions at which carbon exists in certain metastable states that may yield useful material properties. Credit: Argonne.

Using the single element carbon as a prototype, the algorithm predicted the ways in which atoms order themselves under a wide range of temperatures and pressures to make up different substances. From there, it constructed a series of what scientists call phase diagrams — a kind of map that helps guide their search for new and useful states of matter.

“We trained a computer to probe, question and learn how carbon atoms could be organized to create phases that we might not find on earth or that we don’t fully understand, thereby automating a whole step in the materials development process,” said Pierre Darancet, an Argonne scientist and author on the study. ​“The more of this process a computer can handle on its own, the more materials science we can get done.”

Equilibrium and Beyond

When a material’s atomic structure changes, so can its electronic, thermal and mechanical properties. Scientists want to find new ways to arrange atoms to develop useful materials. A prime way to change the atomic structure of a material is to vary the surrounding pressure and temperature.

We see this sort of structural change commonly in water. At room temperature and normal atmospheric pressure, water is most stable as a liquid. If you decrease the temperature enough, the same water molecules will arrange themselves to form solid ice.

Similarly, diamond and graphite are wildly different materials, but they both consist exclusively of carbon atoms — just arranged in different ways. Under normal conditions, graphite is a much more stable form of carbon than diamond. Under conditions of extreme pressure and heat, however, graphite slowly crystallizes into diamond. When removed from those extreme conditions, the diamond persists, lingering in what scientists call a metastable state.

The ML algorithm constructed phase diagrams that mapped hundreds of these metastable states of carbon, some known and some new.

“It’s experimentally difficult to predict and produce states of matter that are not near equilibrium conditions,” said Jianguo Wen, an Argonne experimentalist on the study. ​“This new computational approach enables us to explore those little-known regions on the maps that aren’t otherwise accessible, or that we don’t yet even know exist.”

Verifying the Algorithm

The scientists trained the ML algorithm with synthetic data, which is produced through simulation and approximates results scientists would get through experiment. They generated the dataset using molecular dynamics and density functional theory, both common computational chemistry tools.

The training data was produced using Carbon, a high performance computing cluster at Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science user facility. Also used were two other DOE user facilities: the Argonne Leadership Computing Facility and the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

Using the algorithm’s predictions as a guide, the team verified its efficacy by synthesizing actual samples and characterizing them using a transmission electron microscope at CNM.

The algorithm successfully predicted well-known phase diagrams for carbon, and the computer-generated phase diagrams affirmed and shed light on several yet-unexplained experimental observations.

In particular, the algorithm identified the previously ambiguous structure of n-diamond (stands for ​“new diamond”), a state of carbon that has mystified scientists since it was theorized over 30 years ago. ​“The algorithm made new and surprising predictions about structural features of n-diamond that we verified with experiment, demonstrating that the algorithm holds up, even with high-profile phases,” said Wen.

The team also synthesized several phases predicted by the algorithm that have not yet been reported in the scientific literature. The structures of the samples matched the predictions, further verifying the algorithm.

“Materials synthesis, especially of those with exotic properties, can often take several experimental trials and years of effort,” said Argonne scientist Subramanian Sankaranarayanan, a lead author on the study. ​“Our machine learning algorithms allow us to identify the synthesis conditions of exotic materials, potentially reducing the time for their experimental realization.”

In this study, the algorithm was applied to carbon only. In the future, the scientists hope to apply the same approach to systems of more than one element. Applying the machine learning algorithm to more complex systems could lead to broad impact on the discovery and design of useful materials.

A paper on the study, ​“Machine learning the metastable phase diagram of covalently bonded carbon,” was published in Nature Communications. In addition to Darancet, Sankaranarayanan and Wen, Argonne authors include Rohit Batra, Henry Chan, Troy Loeffler, Duan Luo, Sukriti Manna and Srilok Srinivasan.

This work was supported by the DOE Office of Basic Energy Sciences, Data, Artificial Intelligence and Machine Learning through the DOE Scientific User Facilities program (Digital Twins and Collaborative MLExchange). Additional computing resources included Fusion and Blues, high performance computing clusters operated by the Laboratory Computing Resource Center at Argonne.

About Argonne

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Savannah Mitchem, Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

Nvidia Appoints Andy Grant as EMEA Director of Supercomputing, Higher Education, and AI

March 22, 2024

Nvidia recently appointed Andy Grant as Director, Supercomputing, Higher Education, and AI for Europe, the Middle East, and Africa (EMEA). With over 25 years of high-performance computing (HPC) experience, Grant brings a Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Houston We Have a Solution: Addressing the HPC and Tech Talent Gap

March 15, 2024

Generations of Houstonian teachers, counselors, and parents have either worked in the aerospace industry or know people who do - the prospect of entering the fi Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire